File size: 12,223 Bytes
f74ae8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f9c54f
 
f74ae8e
 
7f9c54f
 
 
f74ae8e
7f9c54f
 
 
f74ae8e
 
7f9c54f
 
f74ae8e
7f9c54f
 
f74ae8e
 
7f9c54f
 
 
 
 
f74ae8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
#!/usr/bin/python3
# -*- coding: utf-8 -*-
"""
https://github.com/yxlu-0102/MP-SENet/blob/main/train.py
"""
import argparse
import json
import logging
from logging.handlers import TimedRotatingFileHandler
import os
import platform
from pathlib import Path
import random
import sys
import shutil
from typing import List

pwd = os.path.abspath(os.path.dirname(__file__))
sys.path.append(os.path.join(pwd, "../../"))

import numpy as np
import torch
from torch.distributed import init_process_group
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel
import torch.nn as nn
from torch.nn import functional as F
from torch.utils.data import DistributedSampler
from torch.utils.data.dataloader import DataLoader
import torchaudio
from tqdm import tqdm

from toolbox.torch.utils.data.dataset.denoise_excel_dataset import DenoiseExcelDataset
from toolbox.torchaudio.models.mpnet.configuation_mpnet import MPNetConfig
from toolbox.torchaudio.models.mpnet.discriminator import MetricDiscriminator, batch_pesq
from toolbox.torchaudio.models.mpnet.modeling_mpnet import MPNet, MPNetPretrainedModel, phase_losses, pesq_score
from toolbox.torchaudio.models.mpnet.utils import mag_pha_stft, mag_pha_istft


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--train_dataset", default="train.xlsx", type=str)
    parser.add_argument("--valid_dataset", default="valid.xlsx", type=str)

    parser.add_argument("--max_epochs", default=100, type=int)

    parser.add_argument("--batch_size", default=64, type=int)
    parser.add_argument("--learning_rate", default=1e-4, type=float)
    parser.add_argument("--num_serialized_models_to_keep", default=10, type=int)
    parser.add_argument("--patience", default=5, type=int)
    parser.add_argument("--serialization_dir", default="serialization_dir", type=str)

    parser.add_argument("--config_file", default="config.yaml", type=str)

    args = parser.parse_args()
    return args


def logging_config(file_dir: str):
    fmt = "%(asctime)s - %(name)s - %(levelname)s  %(filename)s:%(lineno)d >  %(message)s"

    logging.basicConfig(format=fmt,
                        datefmt="%m/%d/%Y %H:%M:%S",
                        level=logging.INFO)
    file_handler = TimedRotatingFileHandler(
        filename=os.path.join(file_dir, "main.log"),
        encoding="utf-8",
        when="D",
        interval=1,
        backupCount=7
    )
    file_handler.setLevel(logging.INFO)
    file_handler.setFormatter(logging.Formatter(fmt))
    logger = logging.getLogger(__name__)
    logger.addHandler(file_handler)

    return logger


class CollateFunction(object):
    def __init__(self):
        pass

    def __call__(self, batch: List[dict]):
        clean_audios = list()
        noisy_audios = list()

        for sample in batch:
            # noise_wave: torch.Tensor = sample["noise_wave"]
            clean_audio: torch.Tensor = sample["speech_wave"]
            noisy_audio: torch.Tensor = sample["mix_wave"]
            # snr_db: float = sample["snr_db"]

            clean_audios.append(clean_audio)
            noisy_audios.append(noisy_audio)

        clean_audios = torch.stack(clean_audios)
        noisy_audios = torch.stack(noisy_audios)

        # assert
        if torch.any(torch.isnan(clean_audios)) or torch.any(torch.isinf(clean_audios)):
            raise AssertionError("nan or inf in clean_audios")
        if torch.any(torch.isnan(noisy_audios)) or torch.any(torch.isinf(noisy_audios)):
            raise AssertionError("nan or inf in noisy_audios")
        return clean_audios, noisy_audios


collate_fn = CollateFunction()


def main():
    args = get_args()

    config = MPNetConfig.from_pretrained(
        pretrained_model_name_or_path=args.config_file,
    )

    serialization_dir = Path(args.serialization_dir)
    serialization_dir.mkdir(parents=True, exist_ok=True)

    logger = logging_config(serialization_dir)

    random.seed(config.seed)
    np.random.seed(config.seed)
    torch.manual_seed(config.seed)
    logger.info(f"set seed: {config.seed}")

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    n_gpu = torch.cuda.device_count()
    logger.info(f"GPU available count: {n_gpu}; device: {device}")

    # datasets
    train_dataset = DenoiseExcelDataset(
        excel_file=args.train_dataset,
        expected_sample_rate=8000,
        max_wave_value=32768.0,
    )
    valid_dataset = DenoiseExcelDataset(
        excel_file=args.valid_dataset,
        expected_sample_rate=8000,
        max_wave_value=32768.0,
    )
    train_data_loader = DataLoader(
        dataset=train_dataset,
        batch_size=args.batch_size,
        shuffle=True,
        sampler=None,
        # Linux 系统中可以使用多个子进程加载数据, 而在 Windows 系统中不能.
        num_workers=0 if platform.system() == "Windows" else os.cpu_count() // 2,
        collate_fn=collate_fn,
        pin_memory=False,
        # prefetch_factor=64,
    )
    valid_data_loader = DataLoader(
        dataset=valid_dataset,
        batch_size=args.batch_size,
        shuffle=True,
        sampler=None,
        # Linux 系统中可以使用多个子进程加载数据, 而在 Windows 系统中不能.
        num_workers=0 if platform.system() == "Windows" else os.cpu_count() // 2,
        collate_fn=collate_fn,
        pin_memory=False,
        # prefetch_factor=64,
    )

    # models
    logger.info(f"prepare models. config_file: {args.config_file}")
    generator = MPNetPretrainedModel(config).to(device)
    discriminator = MetricDiscriminator().to(device)

    # optimizer
    logger.info("prepare optimizer, lr_scheduler, loss_fn, categorical_accuracy")
    num_params = 0
    for p in generator.parameters():
        num_params += p.numel()
    print("Total Parameters (generator): {:.3f}M".format(num_params/1e6))

    optim_g = torch.optim.AdamW(generator.parameters(), config.learning_rate, betas=[config.adam_b1, config.adam_b2])
    optim_d = torch.optim.AdamW(discriminator.parameters(), config.learning_rate, betas=[config.adam_b1, config.adam_b2])

    scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=config.lr_decay, last_epoch=-1)
    scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=config.lr_decay, last_epoch=-1)

    # training loop
    logger.info("training")
    for idx_epoch in range(args.max_epochs):
        generator.train()
        discriminator.train()

        total_loss_d = 0.
        total_loss_g = 0.
        total_batches = 0.
        progress_bar = tqdm(
            total=len(train_data_loader),
            desc="Training; epoch: {}".format(idx_epoch),
        )
        for batch in train_data_loader:
            clean_audio, noisy_audio = batch
            clean_audio = torch.autograd.Variable(clean_audio.to(device, non_blocking=True))
            noisy_audio = torch.autograd.Variable(noisy_audio.to(device, non_blocking=True))
            one_labels = torch.ones(config.batch_size).to(device, non_blocking=True)

            clean_mag, clean_pha, clean_com = mag_pha_stft(clean_audio, config.n_fft, config.hop_size, config.win_size, config.compress_factor)
            noisy_mag, noisy_pha, noisy_com = mag_pha_stft(noisy_audio, config.n_fft, config.hop_size, config.win_size, config.compress_factor)

            mag_g, pha_g, com_g = generator.forward(noisy_mag, noisy_pha)

            audio_g = mag_pha_istft(mag_g, pha_g, config.n_fft, config.hop_size, config.win_size, config.compress_factor)
            mag_g_hat, pha_g_hat, com_g_hat = mag_pha_stft(audio_g, config.n_fft, config.hop_size, config.win_size, config.compress_factor)

            audio_list_r, audio_list_g = list(clean_audio.cpu().numpy()), list(audio_g.detach().cpu().numpy())
            batch_pesq_score = batch_pesq(audio_list_r, audio_list_g)

            # Discriminator
            optim_d.zero_grad()
            metric_r = discriminator.forward(clean_mag, clean_mag)
            metric_g = discriminator.forward(clean_mag, mag_g_hat.detach())
            loss_disc_r = F.mse_loss(one_labels, metric_r.flatten())

            if batch_pesq_score is not None:
                loss_disc_g = F.mse_loss(batch_pesq_score.to(device), metric_g.flatten())
            else:
                print("pesq is None!")
                loss_disc_g = 0

            loss_disc_all = loss_disc_r + loss_disc_g
            loss_disc_all.backward()
            optim_d.step()

            # Generator
            optim_g.zero_grad()
            # L2 Magnitude Loss
            loss_mag = F.mse_loss(clean_mag, mag_g)
            # Anti-wrapping Phase Loss
            loss_ip, loss_gd, loss_iaf = phase_losses(clean_pha, pha_g)
            loss_pha = loss_ip + loss_gd + loss_iaf
            # L2 Complex Loss
            loss_com = F.mse_loss(clean_com, com_g) * 2
            # L2 Consistency Loss
            loss_stft = F.mse_loss(com_g, com_g_hat) * 2
            # Time Loss
            loss_time = F.l1_loss(clean_audio, audio_g)
            # Metric Loss
            metric_g = discriminator.forward(clean_mag, mag_g_hat)
            loss_metric = F.mse_loss(metric_g.flatten(), one_labels)

            loss_gen_all = loss_mag * 0.9 + loss_pha * 0.3  + loss_com * 0.1 + loss_stft * 0.1 + loss_metric * 0.05 + loss_time * 0.2

            loss_gen_all.backward()
            optim_g.step()

            total_loss_d += loss_disc_all.item()
            total_loss_g += loss_gen_all.item()
            total_batches += 1

            progress_bar.update(1)
            progress_bar.set_postfix({
                "loss_d": round(total_loss_d / total_batches, 4),
                "loss_g": round(total_loss_g / total_batches, 4),
            })

        generator.eval()
        torch.cuda.empty_cache()
        total_pesq_score = 0.
        total_mag_err = 0.
        total_pha_err = 0.
        total_com_err = 0.
        total_stft_err = 0.
        total_batches = 0.

        progress_bar = tqdm(
            total=len(valid_data_loader),
            desc="Evaluation; epoch: {}".format(idx_epoch),
        )
        with torch.no_grad():
            for batch in valid_data_loader:
                clean_audio, noisy_audio = batch
                clean_audio = torch.autograd.Variable(clean_audio.to(device, non_blocking=True))
                noisy_audio = torch.autograd.Variable(noisy_audio.to(device, non_blocking=True))

                clean_mag, clean_pha, clean_com = mag_pha_stft(clean_audio, config.n_fft, config.hop_size, config.win_size, config.compress_factor)
                noisy_mag, noisy_pha, noisy_com = mag_pha_stft(noisy_audio, config.n_fft, config.hop_size, config.win_size, config.compress_factor)

                mag_g, pha_g, com_g = generator.forward(noisy_mag, noisy_pha)

                audio_g = mag_pha_istft(mag_g, pha_g, config.n_fft, config.hop_size, config.win_size, config.compress_factor)
                mag_g_hat, pha_g_hat, com_g_hat = mag_pha_stft(audio_g, config.n_fft, config.hop_size, config.win_size, config.compress_factor)

                total_pesq_score += pesq_score(
                    torch.split(clean_audio, 1, dim=0),
                    torch.split(audio_g, 1, dim=0),
                    config
                ).item()
                total_mag_err += F.mse_loss(clean_mag, mag_g).item()
                val_ip_err, val_gd_err, val_iaf_err = phase_losses(clean_pha, pha_g)
                total_pha_err += (val_ip_err + val_gd_err + val_iaf_err).item()
                total_com_err += F.mse_loss(clean_com, com_g).item()
                total_stft_err += F.mse_loss(com_g, com_g_hat).item()

                total_batches += 1

                progress_bar.update(1)
                progress_bar.set_postfix({
                    "pesq_score": round(total_pesq_score / total_batches, 4),
                    "mag_err": round(total_mag_err / total_batches, 4),
                    "pha_err": round(total_pha_err / total_batches, 4),
                    "com_err": round(total_com_err / total_batches, 4),
                    "stft_err": round(total_stft_err / total_batches, 4),

                })

    return


if __name__ == '__main__':
    main()