Spaces:
Running
Running
File size: 13,022 Bytes
e1f02dd 8c3c188 e1f02dd 8c3c188 e1f02dd 8c3c188 e1f02dd 8c3c188 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
#!/usr/bin/python3
# -*- coding: utf-8 -*-
"""
https://github.com/LXP-Never/TCNN
https://github.com/LXP-Never/TCNN/blob/main/TCNN_model.py
https://github.com/HardeyPandya/Temporal-Convolutional-Neural-Network-Single-Channel-Speech-Enhancement
https://ieeexplore.ieee.org/abstract/document/8683634
参考来源:
https://github.com/WenzheLiu-Speech/awesome-speech-enhancement
"""
from typing import Union
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.nn.common_types import _size_1_t, _size_2_t, _size_3_t
class Chomp1d(nn.Module):
def __init__(self, chomp_size: int):
super(Chomp1d, self).__init__()
self.chomp_size = chomp_size
def forward(self, x: torch.Tensor):
return x[:, :, :-self.chomp_size].contiguous()
class DepthwiseSeparableConv(nn.Module):
def __init__(self,
in_channels: int,
out_channels: int,
kernel_size: _size_1_t,
stride: _size_1_t = 1,
padding: Union[str, _size_1_t] = 0,
dilation: _size_1_t = 1,
causal: bool = False,
):
super(DepthwiseSeparableConv, self).__init__()
# Use `groups` option to implement depthwise convolution
self.depthwise_conv = nn.Conv1d(
in_channels=in_channels, out_channels=in_channels,
kernel_size=kernel_size, stride=stride,
padding=padding, dilation=dilation,
groups=in_channels,
bias=False,
)
self.chomp1d = Chomp1d(padding) if causal else nn.Identity()
self.prelu = nn.PReLU()
self.norm = nn.BatchNorm1d(in_channels)
self.pointwise_conv = nn.Conv1d(
in_channels=in_channels, out_channels=out_channels,
kernel_size=1,
bias=False,
)
def forward(self, x: torch.Tensor):
# x shape: [b, c, t]
x = self.depthwise_conv.forward(x)
# x shape: [b, c, t_pad]
x = self.chomp1d(x)
# x shape: [b, c, t]
x = self.prelu(x)
x = self.norm(x)
x = self.pointwise_conv.forward(x)
return x
class ResBlock(nn.Module):
def __init__(self,
in_channels: int,
hidden_channels: int,
kernel_size: _size_1_t,
dilation: _size_1_t = 1,
):
super(ResBlock, self).__init__()
self.conv1d = nn.Conv1d(in_channels=in_channels, out_channels=hidden_channels, kernel_size=1)
self.prelu = nn.PReLU(num_parameters=1)
self.norm = nn.BatchNorm1d(num_features=hidden_channels)
self.sconv = DepthwiseSeparableConv(
in_channels=hidden_channels,
out_channels=in_channels,
kernel_size=kernel_size,
stride=1,
padding=(kernel_size - 1) * dilation,
dilation=dilation,
causal=True,
)
def forward(self, inputs: torch.Tensor):
x = inputs
# x shape: [b, in_channels, t]
x = self.conv1d.forward(x)
# x shape: [b, out_channels, t]
x = self.prelu(x)
x = self.norm(x)
# x shape: [b, out_channels, t]
x = self.sconv.forward(x)
# x shape: [b, in_channels, t]
result = x + inputs
return result
class TCNNBlock(nn.Module):
def __init__(self,
in_channels: int,
hidden_channels: int,
kernel_size: int = 3,
init_dilation: int = 2,
num_layers: int = 6
):
super(TCNNBlock, self).__init__()
self.layers = nn.ModuleList(modules=[])
for i in range(num_layers):
dilation_size = init_dilation ** i
# in_channels = in_channels if i == 0 else out_channels
self.layers.append(
ResBlock(
in_channels,
hidden_channels,
kernel_size,
dilation=dilation_size,
)
)
def forward(self, x: torch.Tensor):
for layer in self.layers:
# x shape: [b, c, t]
x = layer.forward(x)
# x shape: [b, c, t]
return x
class TCNN(nn.Module):
def __init__(self):
super(TCNN, self).__init__()
self.win_size = 320
self.hop_size = 160
self.conv2d_1 = nn.Sequential(
nn.Conv2d(in_channels=1, out_channels=16, kernel_size=(3, 5), stride=(1, 1), padding=(1, 2)),
nn.BatchNorm2d(num_features=16),
nn.PReLU()
)
self.conv2d_2 = nn.Sequential(
nn.Conv2d(in_channels=16, out_channels=16, kernel_size=(3, 5), stride=(1, 2), padding=(1, 2)),
nn.BatchNorm2d(num_features=16),
nn.PReLU()
)
self.conv2d_3 = nn.Sequential(
nn.Conv2d(in_channels=16, out_channels=16, kernel_size=(3, 5), stride=(1, 2), padding=(1, 1)),
nn.BatchNorm2d(num_features=16),
nn.PReLU()
)
self.conv2d_4 = nn.Sequential(
nn.Conv2d(in_channels=16, out_channels=32, kernel_size=(3, 5), stride=(1, 2), padding=(1, 1)),
nn.BatchNorm2d(num_features=32),
nn.PReLU()
)
self.conv2d_5 = nn.Sequential(
nn.Conv2d(in_channels=32, out_channels=32, kernel_size=(3, 5), stride=(1, 2), padding=(1, 1)),
nn.BatchNorm2d(num_features=32),
nn.PReLU()
)
self.conv2d_6 = nn.Sequential(
nn.Conv2d(in_channels=32, out_channels=64, kernel_size=(3, 5), stride=(1, 2), padding=(1, 1)),
nn.BatchNorm2d(num_features=64),
nn.PReLU()
)
self.conv2d_7 = nn.Sequential(
nn.Conv2d(in_channels=64, out_channels=64, kernel_size=(3, 5), stride=(1, 2), padding=(1, 1)),
nn.BatchNorm2d(num_features=64),
nn.PReLU()
)
# 256 = 64 * 4
self.tcnn_block_1 = TCNNBlock(in_channels=256, hidden_channels=512, kernel_size=3, init_dilation=2, num_layers=6)
self.tcnn_block_2 = TCNNBlock(in_channels=256, hidden_channels=512, kernel_size=3, init_dilation=2, num_layers=6)
self.tcnn_block_3 = TCNNBlock(in_channels=256, hidden_channels=512, kernel_size=3, init_dilation=2, num_layers=6)
self.dconv2d_7 = nn.Sequential(
nn.ConvTranspose2d(in_channels=128, out_channels=64, kernel_size=(3, 5), stride=(1, 2), padding=(1, 1),
output_padding=(0, 0)),
nn.BatchNorm2d(num_features=64),
nn.PReLU()
)
self.dconv2d_6 = nn.Sequential(
nn.ConvTranspose2d(in_channels=128, out_channels=32, kernel_size=(3, 5), stride=(1, 2), padding=(1, 1),
output_padding=(0, 0)),
nn.BatchNorm2d(num_features=32),
nn.PReLU()
)
self.dconv2d_5 = nn.Sequential(
nn.ConvTranspose2d(in_channels=64, out_channels=32, kernel_size=(3, 5), stride=(1, 2), padding=(1, 1),
output_padding=(0, 0)),
nn.BatchNorm2d(num_features=32),
nn.PReLU()
)
self.dconv2d_4 = nn.Sequential(
nn.ConvTranspose2d(in_channels=64, out_channels=16, kernel_size=(3, 5), stride=(1, 2), padding=(1, 1),
output_padding=(0, 0)),
nn.BatchNorm2d(num_features=16),
nn.PReLU()
)
self.dconv2d_3 = nn.Sequential(
nn.ConvTranspose2d(in_channels=32, out_channels=16, kernel_size=(3, 5), stride=(1, 2), padding=(1, 1),
output_padding=(0, 1)),
nn.BatchNorm2d(num_features=16),
nn.PReLU()
)
self.dconv2d_2 = nn.Sequential(
nn.ConvTranspose2d(in_channels=32, out_channels=16, kernel_size=(3, 5), stride=(1, 2), padding=(1, 2),
output_padding=(0, 1)),
nn.BatchNorm2d(num_features=16),
nn.PReLU()
)
self.dconv2d_1 = nn.Sequential(
nn.ConvTranspose2d(in_channels=32, out_channels=1, kernel_size=(3, 5), stride=(1, 1), padding=(1, 2),
output_padding=(0, 0)),
nn.BatchNorm2d(num_features=1),
nn.PReLU()
)
def signal_prepare(self, signal: torch.Tensor) -> torch.Tensor:
if signal.dim() == 2:
signal = torch.unsqueeze(signal, dim=1)
_, _, n_samples = signal.shape
remainder = (n_samples - self.win_size) % self.hop_size
if remainder > 0:
n_samples_pad = self.hop_size - remainder
signal = F.pad(signal, pad=(0, n_samples_pad), mode="constant", value=0)
return signal, n_samples
def forward(self,
noisy: torch.Tensor,
):
noisy, num_samples = self.signal_prepare(noisy)
batch_size, _, num_samples_pad = noisy.shape
# n_frame = (num_samples_pad - self.win_size) / self.hop_size + 1
# unfold
# noisy shape: [b, 1, num_samples_pad]
noisy = noisy.unsqueeze(1)
# noisy shape: [b, 1, 1, num_samples_pad]
noisy_frame = torch.nn.functional.unfold(
input=noisy,
kernel_size=(1, self.win_size),
padding=(0, 0),
stride=(1, self.hop_size),
)
# noisy_frame shape: [b, win_size, n_frame]
noisy_frame = noisy_frame.unsqueeze(1)
# noisy_frame shape: [b, 1, win_size, n_frame]
noisy_frame = noisy_frame.permute(0, 1, 3, 2)
# noisy_frame shape: [b, 1, n_frame, win_size]
denoise_frame = self.forward_chunk(noisy_frame)
# denoise_frame shape: [b, c, n_frame, win_size]
denoise_frame = denoise_frame.squeeze(1)
# denoise_frame shape: [b, n_frame, win_size]
denoise = self.denoise_frame_to_denoise(denoise_frame, batch_size, num_samples_pad)
# denoise shape: [b, num_samples_pad]
denoise = denoise[:, :num_samples]
# denoise shape: [b, num_samples]
return denoise
def forward_chunk(self, inputs: torch.Tensor):
# inputs shape: [b, c, t, segment_length]
conv2d_1 = self.conv2d_1(inputs)
conv2d_2 = self.conv2d_2(conv2d_1)
conv2d_3 = self.conv2d_3(conv2d_2)
conv2d_4 = self.conv2d_4(conv2d_3)
conv2d_5 = self.conv2d_5(conv2d_4)
conv2d_6 = self.conv2d_6(conv2d_5)
conv2d_7 = self.conv2d_7(conv2d_6)
# shape: [b, c, t, 4]
reshape_1 = conv2d_7.permute(0, 1, 3, 2)
# shape: [b, c, 4, t]
batch_size, C, frame_len, frame_num = reshape_1.shape
reshape_1 = reshape_1.reshape(batch_size, C * frame_len, frame_num)
# shape: [b, c*4, t]
tcnn_block_1 = self.tcnn_block_1.forward(reshape_1)
tcnn_block_2 = self.tcnn_block_2.forward(tcnn_block_1)
tcnn_block_3 = self.tcnn_block_3.forward(tcnn_block_2)
# shape: [b, c*4, t]
reshape_2 = tcnn_block_3.reshape(batch_size, C, frame_len, frame_num)
reshape_2 = reshape_2.permute(0, 1, 3, 2)
# shape: [b, c, t, 4]
dconv2d_7 = self.dconv2d_7(torch.cat((conv2d_7, reshape_2), dim=1))
dconv2d_6 = self.dconv2d_6(torch.cat((conv2d_6, dconv2d_7), dim=1))
dconv2d_5 = self.dconv2d_5(torch.cat((conv2d_5, dconv2d_6), dim=1))
dconv2d_4 = self.dconv2d_4(torch.cat((conv2d_4, dconv2d_5), dim=1))
dconv2d_3 = self.dconv2d_3(torch.cat((conv2d_3, dconv2d_4), dim=1))
dconv2d_2 = self.dconv2d_2(torch.cat((conv2d_2, dconv2d_3), dim=1))
dconv2d_1 = self.dconv2d_1(torch.cat((conv2d_1, dconv2d_2), dim=1))
return dconv2d_1
def denoise_frame_to_denoise(self, denoise_frame: torch.Tensor, batch_size: int, num_samples: int):
# overlap and add
# https://github.com/HardeyPandya/Temporal-Convolutional-Neural-Network-Single-Channel-Speech-Enhancement/blob/main/TCNN/util/utils.py#L40
b, t, f = denoise_frame.shape
if f != self.win_size:
raise AssertionError
denoise = torch.zeros(size=(b, num_samples), dtype=denoise_frame.dtype)
count = torch.zeros(size=(b, num_samples), dtype=torch.float32)
start = 0
end = start + self.win_size
for i in range(t):
denoise[..., start:end] += denoise_frame[:, i, :]
count[..., start:end] += 1.
start += self.hop_size
end = start + self.win_size
denoise = denoise / count
return denoise
def main():
model = TCNN()
x = torch.randn(64, 1, 5, 320)
# x = torch.randn(64, 1, 5, 160)
y = model.forward_chunk(x)
print("output", y.shape)
noisy = torch.randn(size=(2, 16000), dtype=torch.float32)
denoise = model.forward(noisy)
print(f"denoise.shape: {denoise.shape}")
return
if __name__ == "__main__":
main()
|