File size: 6,448 Bytes
9192cea
 
2171fed
 
 
169d6d6
9192cea
 
 
169d6d6
2171fed
169d6d6
 
 
 
 
 
2171fed
169d6d6
 
 
2171fed
169d6d6
 
 
 
 
2171fed
169d6d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
602ffc9
169d6d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
602ffc9
169d6d6
 
 
 
 
 
 
 
 
 
 
 
2171fed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9192cea
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import math

import numpy as np
import torch
import torch.nn as nn


class EMANumpy(object):

    @classmethod
    def _calculate_norm_alpha(cls, sample_rate: int, hop_size: int, tau: float):
        """Exponential decay factor alpha for a given tau (decay window size [s])."""
        dt = hop_size / sample_rate
        result = math.exp(-dt / tau)
        return result

    @classmethod
    def get_norm_alpha(cls, sample_rate: int, hop_size: int, norm_tau: float) -> float:
        a_ = cls._calculate_norm_alpha(sample_rate=sample_rate, hop_size=hop_size, tau=norm_tau)

        precision = 3
        a = 1.0
        while a >= 1.0:
            a = round(a_, precision)
            precision += 1

        return a


class ErbEMA(nn.Module, EMANumpy):
    def __init__(self,
                 sample_rate: int = 8000,
                 hop_size: int = 80,
                 erb_bins: int = 32,
                 mean_norm_init_start: float = -60.,
                 mean_norm_init_end: float = -90.,
                 norm_tau: float = 1.,
                 ):
        super().__init__()
        self.sample_rate = sample_rate
        self.hop_size = hop_size
        self.erb_bins = erb_bins
        self.mean_norm_init_start = mean_norm_init_start
        self.mean_norm_init_end = mean_norm_init_end
        self.norm_tau = norm_tau

        self.alpha = self.get_norm_alpha(sample_rate, hop_size, norm_tau)

    def make_erb_norm_state(self) -> torch.Tensor:
        state = torch.linspace(start=self.mean_norm_init_start, end=self.mean_norm_init_end,
                               steps=self.erb_bins)
        state = state.unsqueeze(0).unsqueeze(0)
        # state shape: [b, c, erb_bins]
        # state shape: [1, 1, erb_bins]
        return state

    def norm(self,
             feat_erb: torch.Tensor,
             state: torch.Tensor = None,
             ):
        feat_erb = feat_erb.clone()
        b, c, t, f = feat_erb.shape

        # erb_feat shape: [b, c, t, f]
        if state is None:
            state = self.make_erb_norm_state()
            state = state.to(feat_erb.device)
        state = state.clone()

        for j in range(t):
            current = feat_erb[:, :, j, :]
            new_state = current * (1 - self.alpha) + state * self.alpha

            feat_erb[:, :, j, :] = (current - new_state) / 40.0
            state = new_state

        return feat_erb, state


class SpecEMA(nn.Module, EMANumpy):
    """
    https://github.com/grazder/DeepFilterNet/blob/torchDF_main/libDF/src/lib.rs
    """
    def __init__(self,
                 sample_rate: int = 8000,
                 hop_size: int = 80,
                 df_bins: int = 96,
                 unit_norm_init_start: float = 0.001,
                 unit_norm_init_end: float = 0.0001,
                 norm_tau: float = 1.,
                 ):
        super().__init__()
        self.sample_rate = sample_rate
        self.hop_size = hop_size
        self.df_bins = df_bins
        self.unit_norm_init_start = unit_norm_init_start
        self.unit_norm_init_end = unit_norm_init_end
        self.norm_tau = norm_tau

        self.alpha = self.get_norm_alpha(sample_rate, hop_size, norm_tau)

    def make_spec_norm_state(self) -> torch.Tensor:
        state = torch.linspace(start=self.unit_norm_init_start, end=self.unit_norm_init_end,
                               steps=self.df_bins)
        state = state.unsqueeze(0).unsqueeze(0)
        # state shape: [b, c, df_bins]
        # state shape: [1, 1, df_bins]
        return state

    def norm(self,
             feat_spec: torch.Tensor,
             state: torch.Tensor = None,
             ):
        feat_spec = feat_spec.clone()
        b, c, t, f = feat_spec.shape

        # feat_spec shape: [b, 2, t, df_bins]
        if state is None:
            state = self.make_spec_norm_state()
            state = state.to(feat_spec.device)
        state = state.clone()

        for j in range(t):
            current = feat_spec[:, :, j, :]
            current_abs = torch.sum(torch.square(current), dim=1, keepdim=True)
            # current_abs shape: [b, 1, df_bins]
            new_state = current_abs * (1 - self.alpha) + state * self.alpha

            feat_spec[:, :, j, :] = current / torch.sqrt(new_state)
            state = new_state

        return feat_spec, state


MEAN_NORM_INIT = [-60., -90.]


def make_erb_norm_state(erb_bins: int, channels: int) -> np.ndarray:
    state = np.linspace(MEAN_NORM_INIT[0], MEAN_NORM_INIT[1], erb_bins)
    state = np.expand_dims(state, axis=0)
    state = np.repeat(state, channels, axis=0)

    # state shape: (audio_channels, erb_bins)
    return state


def erb_normalize(erb_feat: np.ndarray, alpha: float, state: np.ndarray = None):
    erb_feat = np.copy(erb_feat)
    batch_size, time_steps, erb_bins = erb_feat.shape

    if state is None:
        state = make_erb_norm_state(erb_bins, erb_feat.shape[0])
        # state = np.linspace(MEAN_NORM_INIT[0], MEAN_NORM_INIT[1], erb_bins)
        # state = np.expand_dims(state, axis=0)
        # state = np.repeat(state, erb_feat.shape[0], axis=0)

    for i in range(batch_size):
        for j in range(time_steps):
            for k in range(erb_bins):
                x = erb_feat[i][j][k]
                s = state[i][k]

                state[i][k] = x * (1. - alpha) + s * alpha
                erb_feat[i][j][k] -= state[i][k]
                erb_feat[i][j][k] /= 40.

    return erb_feat


UNIT_NORM_INIT = [0.001, 0.0001]


def make_spec_norm_state(df_bins: int, channels: int) -> np.ndarray:
    state = np.linspace(UNIT_NORM_INIT[0], UNIT_NORM_INIT[1], df_bins)
    state = np.expand_dims(state, axis=0)
    state = np.repeat(state, channels, axis=0)

    # state shape: (audio_channels, df_bins)
    return state


def spec_normalize(spec_feat: np.ndarray, alpha: float, state: np.ndarray = None):
    spec_feat = np.copy(spec_feat)
    batch_size, time_steps, df_bins = spec_feat.shape

    if state is None:
        state = make_spec_norm_state(df_bins, spec_feat.shape[0])

    for i in range(batch_size):
        for j in range(time_steps):
            for k in range(df_bins):
                x = spec_feat[i][j][k]
                s = state[i][k]

                state[i][k] = np.abs(x) * (1. - alpha) + s * alpha
                spec_feat[i][j][k] /= np.sqrt(state[i][k])
    return spec_feat


if __name__ == "__main__":
    pass