File size: 4,231 Bytes
33aff71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import os
from typing import Optional, Union

import torch
import torch.nn as nn
import torchaudio

from toolbox.torchaudio.configuration_utils import CONFIG_FILE
from toolbox.torchaudio.models.nx_mpnet.configuration_nx_mpnet import NXMPNetConfig
from toolbox.torchaudio.models.nx_mpnet.utils import LearnableSigmoid1d


class MetricDiscriminator(nn.Module):
    def __init__(self, config: NXMPNetConfig):
        super(MetricDiscriminator, self).__init__()
        dim = config.discriminator_dim
        self.in_channel = config.discriminator_in_channel

        self.n_fft = config.n_fft
        self.win_length = config.win_length
        self.hop_length = config.hop_length

        self.transform = torchaudio.transforms.Spectrogram(
            n_fft=self.n_fft,
            win_length=self.win_length,
            hop_length=self.hop_length,
            power=1.0,
            window_fn=torch.hann_window,
            # window_fn=torch.hamming_window if window_fn == "hamming" else torch.hann_window,
        )

        self.layers = nn.Sequential(
            nn.utils.spectral_norm(nn.Conv2d(self.in_channel, dim, (4,4), (2,2), (1,1), bias=False)),
            nn.InstanceNorm2d(dim, affine=True),
            nn.PReLU(dim),
            nn.utils.spectral_norm(nn.Conv2d(dim, dim*2, (4,4), (2,2), (1,1), bias=False)),
            nn.InstanceNorm2d(dim*2, affine=True),
            nn.PReLU(dim*2),
            nn.utils.spectral_norm(nn.Conv2d(dim*2, dim*4, (4,4), (2,2), (1,1), bias=False)),
            nn.InstanceNorm2d(dim*4, affine=True),
            nn.PReLU(dim*4),
            nn.utils.spectral_norm(nn.Conv2d(dim*4, dim*8, (4,4), (2,2), (1,1), bias=False)),
            nn.InstanceNorm2d(dim*8, affine=True),
            nn.PReLU(dim*8),
            nn.AdaptiveMaxPool2d(1),
            nn.Flatten(),
            nn.utils.spectral_norm(nn.Linear(dim*8, dim*4)),
            nn.Dropout(0.3),
            nn.PReLU(dim*4),
            nn.utils.spectral_norm(nn.Linear(dim*4, 1)),
            LearnableSigmoid1d(1)
        )

    def forward(self, x, y):
        x = self.transform.forward(x)
        y = self.transform.forward(y)

        xy = torch.stack((x, y), dim=1)
        return self.layers(xy)


MODEL_FILE = "discriminator.pt"


class MetricDiscriminatorPretrainedModel(MetricDiscriminator):
    def __init__(self,
                 config: NXMPNetConfig,
                 ):
        super(MetricDiscriminatorPretrainedModel, self).__init__(
            config=config,
        )
        self.config = config

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
        config = NXMPNetConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)

        model = cls(config)

        if os.path.isdir(pretrained_model_name_or_path):
            ckpt_file = os.path.join(pretrained_model_name_or_path, MODEL_FILE)
        else:
            ckpt_file = pretrained_model_name_or_path

        with open(ckpt_file, "rb") as f:
            state_dict = torch.load(f, map_location="cpu", weights_only=True)
        model.load_state_dict(state_dict, strict=True)
        return model

    def save_pretrained(self,
                        save_directory: Union[str, os.PathLike],
                        state_dict: Optional[dict] = None,
                        ):

        model = self

        if state_dict is None:
            state_dict = model.state_dict()

        os.makedirs(save_directory, exist_ok=True)

        # save state dict
        model_file = os.path.join(save_directory, MODEL_FILE)
        torch.save(state_dict, model_file)

        # save config
        config_file = os.path.join(save_directory, CONFIG_FILE)
        self.config.to_yaml_file(config_file)
        return save_directory


def main():
    config = NXMPNetConfig()
    discriminator = MetricDiscriminator(config=config)

    # shape: [batch_size, num_samples]
    # x = torch.ones([4, int(4.5 * 16000)])
    # y = torch.ones([4, int(4.5 * 16000)])
    x = torch.ones([4, 16000])
    y = torch.ones([4, 16000])

    output = discriminator.forward(x, y)
    print(output.shape)
    print(output)

    return


if __name__ == "__main__":
    main()