Spaces:
Running
Running
File size: 14,141 Bytes
8ed9309 e27a095 8ed9309 e27a095 8ed9309 294430e 8ed9309 e27a095 4f045d5 8ed9309 d5167a5 8ed9309 e27a095 8ed9309 b27ed9f 8ed9309 294430e 8ed9309 b27ed9f 8ed9309 b27ed9f 8ed9309 b27ed9f 8ed9309 e27a095 b27ed9f b8e167f 294430e b8e167f e27a095 b8e167f e27a095 b8e167f e27a095 8ed9309 e1f02dd e27a095 8ed9309 cb8eb69 8ed9309 e27a095 8ed9309 4f045d5 e27a095 8ed9309 e27a095 8ed9309 e27a095 46cf9fb edb0538 e27a095 1042eee e27a095 42e5399 32aa651 e27a095 4f045d5 e27a095 8ed9309 4f045d5 e27a095 8ed9309 4f045d5 e27a095 8ed9309 e27a095 8ed9309 e27a095 4f045d5 e27a095 8ed9309 e27a095 46cf9fb 294430e 1042eee e27a095 42e5399 32aa651 e27a095 4f045d5 e27a095 8ed9309 4f045d5 e27a095 8ed9309 4f045d5 e27a095 8ed9309 e27a095 8ed9309 e27a095 8ed9309 b8e167f 8ed9309 e1f02dd 8ed9309 e1f02dd 8ed9309 e27a095 e1f02dd e27a095 8ed9309 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
#!/usr/bin/python3
# -*- coding: utf-8 -*-
"""
https://github.com/NVIDIA/CleanUNet/blob/main/train.py
https://github.com/NVIDIA/CleanUNet/blob/main/configs/DNS-large-full.json
"""
import argparse
import json
import logging
from logging.handlers import TimedRotatingFileHandler
import os
import platform
from pathlib import Path
import random
import sys
import shutil
from typing import List
pwd = os.path.abspath(os.path.dirname(__file__))
sys.path.append(os.path.join(pwd, "../../"))
import numpy as np
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm
from toolbox.torch.utils.data.dataset.denoise_excel_dataset import DenoiseExcelDataset
from toolbox.torchaudio.models.clean_unet.configuration_clean_unet import CleanUNetConfig
from toolbox.torchaudio.models.clean_unet.modeling_clean_unet import CleanUNetPretrainedModel
from toolbox.torchaudio.models.clean_unet.training import LinearWarmupCosineDecay
from toolbox.torchaudio.models.clean_unet.loss import MultiResolutionSTFTLoss
from toolbox.torchaudio.models.clean_unet.metrics import run_pesq_score
torch.autograd.set_detect_anomaly(True)
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--train_dataset", default="train.xlsx", type=str)
parser.add_argument("--valid_dataset", default="valid.xlsx", type=str)
parser.add_argument("--max_epochs", default=100, type=int)
parser.add_argument("--batch_size", default=64, type=int)
parser.add_argument("--learning_rate", default=2e-4, type=float)
parser.add_argument("--num_serialized_models_to_keep", default=10, type=int)
parser.add_argument("--patience", default=5, type=int)
parser.add_argument("--serialization_dir", default="serialization_dir", type=str)
parser.add_argument("--seed", default=0, type=int)
parser.add_argument("--config_file", default="config.yaml", type=str)
args = parser.parse_args()
return args
def logging_config(file_dir: str):
fmt = "%(asctime)s - %(name)s - %(levelname)s %(filename)s:%(lineno)d > %(message)s"
logging.basicConfig(format=fmt,
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO)
file_handler = TimedRotatingFileHandler(
filename=os.path.join(file_dir, "main.log"),
encoding="utf-8",
when="D",
interval=1,
backupCount=7
)
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(logging.Formatter(fmt))
logger = logging.getLogger(__name__)
logger.addHandler(file_handler)
return logger
class CollateFunction(object):
def __init__(self):
pass
def __call__(self, batch: List[dict]):
clean_audios = list()
noisy_audios = list()
for sample in batch:
# noise_wave: torch.Tensor = sample["noise_wave"]
clean_audio: torch.Tensor = sample["speech_wave"]
noisy_audio: torch.Tensor = sample["mix_wave"]
# snr_db: float = sample["snr_db"]
clean_audios.append(clean_audio)
noisy_audios.append(noisy_audio)
clean_audios = torch.stack(clean_audios)
noisy_audios = torch.stack(noisy_audios)
# assert
if torch.any(torch.isnan(clean_audios)) or torch.any(torch.isinf(clean_audios)):
raise AssertionError("nan or inf in clean_audios")
if torch.any(torch.isnan(noisy_audios)) or torch.any(torch.isinf(noisy_audios)):
raise AssertionError("nan or inf in noisy_audios")
return clean_audios, noisy_audios
collate_fn = CollateFunction()
def main():
args = get_args()
config = CleanUNetConfig.from_pretrained(
pretrained_model_name_or_path=args.config_file,
)
serialization_dir = Path(args.serialization_dir)
serialization_dir.mkdir(parents=True, exist_ok=True)
logger = logging_config(serialization_dir)
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
logger.info(f"set seed: {args.seed}")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
n_gpu = torch.cuda.device_count()
logger.info(f"GPU available count: {n_gpu}; device: {device}")
# datasets
train_dataset = DenoiseExcelDataset(
excel_file=args.train_dataset,
expected_sample_rate=8000,
max_wave_value=32768.0,
)
valid_dataset = DenoiseExcelDataset(
excel_file=args.valid_dataset,
expected_sample_rate=8000,
max_wave_value=32768.0,
)
train_data_loader = DataLoader(
dataset=train_dataset,
batch_size=args.batch_size,
shuffle=True,
sampler=None,
# Linux 系统中可以使用多个子进程加载数据, 而在 Windows 系统中不能.
num_workers=0 if platform.system() == "Windows" else os.cpu_count() // 2,
collate_fn=collate_fn,
pin_memory=False,
# prefetch_factor=64,
)
valid_data_loader = DataLoader(
dataset=valid_dataset,
batch_size=args.batch_size,
shuffle=True,
sampler=None,
# Linux 系统中可以使用多个子进程加载数据, 而在 Windows 系统中不能.
num_workers=0 if platform.system() == "Windows" else os.cpu_count() // 2,
collate_fn=collate_fn,
pin_memory=False,
# prefetch_factor=64,
)
# models
logger.info(f"prepare models. config_file: {args.config_file}")
model = CleanUNetPretrainedModel(config).to(device)
# optimizer
logger.info("prepare optimizer, lr_scheduler, loss_fn, categorical_accuracy")
optimizer = torch.optim.AdamW(model.parameters(), args.learning_rate)
# resume training
last_epoch = -1
for epoch_i in serialization_dir.glob("epoch-*"):
epoch_i = Path(epoch_i)
epoch_idx = epoch_i.stem.split("-")[1]
epoch_idx = int(epoch_idx)
if epoch_idx > last_epoch:
last_epoch = epoch_idx
if last_epoch != -1:
logger.info(f"resume from epoch-{last_epoch}.")
model_pt = serialization_dir / f"epoch-{last_epoch}/model.pt"
optimizer_pth = serialization_dir / f"epoch-{last_epoch}/optimizer.pth"
logger.info(f"load state dict for model.")
with open(model_pt.as_posix(), "rb") as f:
state_dict = torch.load(f, map_location="cpu", weights_only=True)
model.load_state_dict(state_dict, strict=True)
logger.info(f"load state dict for optimizer.")
with open(optimizer_pth.as_posix(), "rb") as f:
state_dict = torch.load(f, map_location="cpu", weights_only=True)
optimizer.load_state_dict(state_dict)
lr_scheduler = LinearWarmupCosineDecay(
optimizer,
lr_max=args.learning_rate,
n_iter=250000,
iteration=250000,
divider=25,
warmup_proportion=0.05,
phase=("linear", "cosine"),
)
# ae_loss_fn = nn.MSELoss(reduction="mean")
ae_loss_fn = nn.L1Loss(reduction="mean").to(device)
mr_stft_loss_fn = MultiResolutionSTFTLoss(
fft_sizes=[256, 512, 1024],
hop_sizes=[25, 50, 120],
win_lengths=[120, 240, 600],
sc_lambda=0.5,
mag_lambda=0.5,
band="full"
).to(device)
# training loop
# state
average_pesq_score = 10000000000
average_loss = 10000000000
average_ae_loss = 10000000000
average_sc_loss = 10000000000
average_mag_loss = 10000000000
model_list = list()
best_idx_epoch = None
best_metric = None
patience_count = 0
logger.info("training")
for idx_epoch in range(max(0, last_epoch+1), args.max_epochs):
# train
model.train()
total_pesq_score = 0.
total_loss = 0.
total_ae_loss = 0.
total_sc_loss = 0.
total_mag_loss = 0.
total_batches = 0.
progress_bar = tqdm(
total=len(train_data_loader),
desc="Training; epoch: {}".format(idx_epoch),
)
for batch in train_data_loader:
clean_audios, noisy_audios = batch
clean_audios = clean_audios.to(device)
noisy_audios = noisy_audios.to(device)
enhanced_audios = model.forward(noisy_audios)
enhanced_audios = torch.squeeze(enhanced_audios, dim=1)
ae_loss = ae_loss_fn(enhanced_audios, clean_audios)
sc_loss, mag_loss = mr_stft_loss_fn(enhanced_audios, clean_audios)
loss = ae_loss + sc_loss + mag_loss
enhanced_audios_list_r = list(enhanced_audios.detach().cpu().numpy())
clean_audios_list_r = list(clean_audios.detach().cpu().numpy())
pesq_score = run_pesq_score(clean_audios_list_r, enhanced_audios_list_r, sample_rate=8000, mode="nb")
optimizer.zero_grad()
loss.backward()
optimizer.step()
lr_scheduler.step()
total_pesq_score += pesq_score
total_loss += loss.item()
total_ae_loss += ae_loss.item()
total_sc_loss += sc_loss.item()
total_mag_loss += mag_loss.item()
total_batches += 1
average_pesq_score = round(total_pesq_score / total_batches, 4)
average_loss = round(total_loss / total_batches, 4)
average_ae_loss = round(total_ae_loss / total_batches, 4)
average_sc_loss = round(total_sc_loss / total_batches, 4)
average_mag_loss = round(total_mag_loss / total_batches, 4)
progress_bar.update(1)
progress_bar.set_postfix({
"pesq_score": average_pesq_score,
"loss": average_loss,
"ae_loss": average_ae_loss,
"sc_loss": average_sc_loss,
"mag_loss": average_mag_loss,
})
# evaluation
model.eval()
torch.cuda.empty_cache()
total_pesq_score = 0.
total_loss = 0.
total_ae_loss = 0.
total_sc_loss = 0.
total_mag_loss = 0.
total_batches = 0.
progress_bar = tqdm(
total=len(valid_data_loader),
desc="Evaluation; epoch: {}".format(idx_epoch),
)
with torch.no_grad():
for batch in valid_data_loader:
clean_audios, noisy_audios = batch
clean_audios = clean_audios.to(device)
noisy_audios = noisy_audios.to(device)
enhanced_audios = model.forward(noisy_audios)
enhanced_audios = torch.squeeze(enhanced_audios, dim=1)
ae_loss = ae_loss_fn(enhanced_audios, clean_audios)
sc_loss, mag_loss = mr_stft_loss_fn(enhanced_audios, clean_audios)
loss = ae_loss + sc_loss + mag_loss
enhanced_audios_list_r = list(enhanced_audios.detach().cpu().numpy())
clean_audios_list_r = list(clean_audios.detach().cpu().numpy())
pesq_score = run_pesq_score(clean_audios_list_r, enhanced_audios_list_r, sample_rate=8000, mode="nb")
total_pesq_score += pesq_score
total_loss += loss.item()
total_ae_loss += ae_loss.item()
total_sc_loss += sc_loss.item()
total_mag_loss += mag_loss.item()
total_batches += 1
average_pesq_score = round(total_pesq_score / total_batches, 4)
average_loss = round(total_loss / total_batches, 4)
average_ae_loss = round(total_ae_loss / total_batches, 4)
average_sc_loss = round(total_sc_loss / total_batches, 4)
average_mag_loss = round(total_mag_loss / total_batches, 4)
progress_bar.update(1)
progress_bar.set_postfix({
"pesq_score": average_pesq_score,
"loss": average_loss,
"ae_loss": average_ae_loss,
"sc_loss": average_sc_loss,
"mag_loss": average_mag_loss,
})
# scheduler
lr_scheduler.step()
# save path
epoch_dir = serialization_dir / "epoch-{}".format(idx_epoch)
epoch_dir.mkdir(parents=True, exist_ok=False)
# save models
model.save_pretrained(epoch_dir.as_posix())
model_list.append(epoch_dir)
if len(model_list) >= args.num_serialized_models_to_keep:
model_to_delete: Path = model_list.pop(0)
shutil.rmtree(model_to_delete.as_posix())
# save optim
torch.save(optimizer.state_dict(), (epoch_dir / "optimizer.pth").as_posix())
# save metric
if best_metric is None:
best_idx_epoch = idx_epoch
best_metric = average_pesq_score
elif average_pesq_score > best_metric:
# great is better.
best_idx_epoch = idx_epoch
best_metric = average_pesq_score
else:
pass
metrics = {
"idx_epoch": idx_epoch,
"best_idx_epoch": best_idx_epoch,
"pesq_score": average_pesq_score,
"loss": average_loss,
"ae_loss": average_ae_loss,
"sc_loss": average_sc_loss,
"mag_loss": average_mag_loss,
}
metrics_filename = epoch_dir / "metrics_epoch.json"
with open(metrics_filename, "w", encoding="utf-8") as f:
json.dump(metrics, f, indent=4, ensure_ascii=False)
# save best
best_dir = serialization_dir / "best"
if best_idx_epoch == idx_epoch:
if best_dir.exists():
shutil.rmtree(best_dir)
shutil.copytree(epoch_dir, best_dir)
# early stop
early_stop_flag = False
if best_idx_epoch == idx_epoch:
patience_count = 0
else:
patience_count += 1
if patience_count >= args.patience:
early_stop_flag = True
# early stop
if early_stop_flag:
break
return
if __name__ == "__main__":
main()
|