File size: 5,243 Bytes
cba47e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da78a0e
cba47e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da78a0e
 
 
cba47e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da78a0e
 
cba47e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import argparse
import json
import os
from pathlib import Path
import random
import sys

pwd = os.path.abspath(os.path.dirname(__file__))
sys.path.append(os.path.join(pwd, "../../"))

import librosa
import numpy as np
from tqdm import tqdm


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--file_dir", default="./", type=str)

    parser.add_argument(
        "--noise_dir",
        default=r"E:\Users\tianx\HuggingDatasets\nx_noise\data\noise",
        type=str
    )
    parser.add_argument(
        "--speech_dir",
        default=r"E:\programmer\asr_datasets\aishell\data_aishell\wav\train",
        type=str
    )

    parser.add_argument("--train_dataset", default="train.jsonl", type=str)
    parser.add_argument("--valid_dataset", default="valid.jsonl", type=str)

    parser.add_argument("--duration", default=4.0, type=float)
    parser.add_argument("--min_snr_db", default=-10, type=float)
    parser.add_argument("--max_snr_db", default=20, type=float)

    parser.add_argument("--target_sample_rate", default=8000, type=int)

    parser.add_argument("--scale", default=1, type=float)

    args = parser.parse_args()
    return args


def filename_generator(data_dir: str):
    data_dir = Path(data_dir)
    for filename in data_dir.glob("**/*.wav"):
        yield filename.as_posix()


def target_second_signal_generator(data_dir: str, duration: int = 2, sample_rate: int = 8000, max_epoch: int = 20000):
    data_dir = Path(data_dir)
    for epoch_idx in range(max_epoch):
        for filename in data_dir.glob("**/*.wav"):
            signal, _ = librosa.load(filename.as_posix(), sr=sample_rate)
            raw_duration = librosa.get_duration(y=signal, sr=sample_rate)

            if raw_duration < duration:
                # print(f"duration less than {duration} s. skip filename: {filename.as_posix()}")
                continue
            if signal.ndim != 1:
                raise AssertionError(f"expected ndim 1, instead of {signal.ndim}")

            signal_length = len(signal)
            win_size = int(duration * sample_rate)
            for begin in range(0, signal_length - win_size, win_size):
                if np.sum(signal[begin: begin+win_size]) == 0:
                    continue
                row = {
                    "epoch_idx": epoch_idx,
                    "filename": filename.as_posix(),
                    "raw_duration": round(raw_duration, 4),
                    "offset": round(begin / sample_rate, 4),
                    "duration": round(duration, 4),
                }
                yield row


def main():
    args = get_args()

    file_dir = Path(args.file_dir)
    file_dir.mkdir(exist_ok=True)

    noise_dir = Path(args.noise_dir)
    speech_dir = Path(args.speech_dir)

    noise_generator = target_second_signal_generator(
        noise_dir.as_posix(),
        duration=args.duration,
        sample_rate=args.target_sample_rate,
        max_epoch=100000,
    )
    speech_generator = target_second_signal_generator(
        speech_dir.as_posix(),
        duration=args.duration,
        sample_rate=args.target_sample_rate,
        max_epoch=1,
    )

    dataset = list()

    count = 0
    process_bar = tqdm(desc="build dataset excel")
    with open(args.train_dataset, "w", encoding="utf-8") as ftrain, open(args.valid_dataset, "w", encoding="utf-8") as fvalid:
        for noise, speech in zip(noise_generator, speech_generator):
            flag = random.random()
            if flag > args.scale:
                continue

            noise_filename = noise["filename"]
            noise_raw_duration = noise["raw_duration"]
            noise_offset = noise["offset"]
            noise_duration = noise["duration"]

            speech_filename = speech["filename"]
            speech_raw_duration = speech["raw_duration"]
            speech_offset = speech["offset"]
            speech_duration = speech["duration"]

            random1 = random.random()
            random2 = random.random()

            row = {
                "count": count,

                "noise_filename": noise_filename,
                "noise_raw_duration": noise_raw_duration,
                "noise_offset": noise_offset,
                "noise_duration": noise_duration,

                "speech_filename": speech_filename,
                "speech_raw_duration": speech_raw_duration,
                "speech_offset": speech_offset,
                "speech_duration": speech_duration,

                "snr_db": random.uniform(args.min_snr_db, args.max_snr_db),

                "random1": random1,
            }
            row = json.dumps(row, ensure_ascii=False)
            if random2 < (1 / 300 / 1):
                fvalid.write(f"{row}\n")
            else:
                ftrain.write(f"{row}\n")

            count += 1
            duration_seconds = count * args.duration
            duration_hours = duration_seconds / 3600

            process_bar.update(n=1)
            process_bar.set_postfix({
                # "duration_seconds": round(duration_seconds, 4),
                "duration_hours": round(duration_hours, 4),

            })

    return


if __name__ == "__main__":
    main()