File size: 16,771 Bytes
f74ae8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ed9309
32aa651
 
f74ae8e
32aa651
f74ae8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f9c54f
 
f74ae8e
 
7f9c54f
 
 
f74ae8e
7f9c54f
 
 
f74ae8e
 
7f9c54f
 
f74ae8e
7f9c54f
 
f74ae8e
 
7f9c54f
 
 
 
 
f74ae8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2f2829
f74ae8e
 
 
 
 
 
 
 
 
 
e2f2829
f74ae8e
 
 
 
 
 
 
 
 
 
 
 
f69c753
f74ae8e
fc1879e
 
 
 
 
 
 
 
 
 
949a94d
ff1dc38
949a94d
5bb28a8
 
f90cb85
ff1dc38
 
3188b07
ff1dc38
 
 
 
fc1879e
 
3188b07
 
 
d91f843
3188b07
 
 
d91f843
3188b07
949a94d
fc1879e
 
 
1a4d07a
fc1879e
 
 
1a4d07a
f74ae8e
7a982a2
 
 
f74ae8e
f69c753
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f74ae8e
9e4f89c
f69c753
f74ae8e
 
 
 
 
 
 
 
 
 
 
 
9828a2d
 
60a97c6
f74ae8e
 
 
 
 
 
 
 
 
 
32aa651
f74ae8e
 
 
 
 
 
 
32aa651
 
f74ae8e
32aa651
 
 
f74ae8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f69c753
 
 
f74ae8e
 
f69c753
 
f74ae8e
 
f69c753
f74ae8e
3188b07
 
f74ae8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9828a2d
 
f74ae8e
 
 
 
 
 
 
 
 
32aa651
 
 
 
 
 
 
 
 
 
 
f74ae8e
 
 
 
 
 
 
 
f69c753
 
 
 
 
 
f74ae8e
 
f69c753
 
 
 
 
f74ae8e
 
f69c753
 
 
 
 
 
 
 
 
 
 
 
fc1879e
 
 
 
f69c753
 
 
 
 
 
 
 
 
949a94d
3188b07
f69c753
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f74ae8e
 
 
f69c753
f74ae8e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
#!/usr/bin/python3
# -*- coding: utf-8 -*-
"""
https://github.com/yxlu-0102/MP-SENet/blob/main/train.py
"""
import argparse
import json
import logging
from logging.handlers import TimedRotatingFileHandler
import os
import platform
from pathlib import Path
import random
import sys
import shutil
from typing import List

pwd = os.path.abspath(os.path.dirname(__file__))
sys.path.append(os.path.join(pwd, "../../"))

import numpy as np
import torch
from torch.nn import functional as F
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm

from toolbox.torch.utils.data.dataset.denoise_excel_dataset import DenoiseExcelDataset
from toolbox.torchaudio.models.mpnet.configuration_mpnet import MPNetConfig
from toolbox.torchaudio.models.mpnet.discriminator import MetricDiscriminatorPretrainedModel
from toolbox.torchaudio.models.mpnet.modeling_mpnet import MPNet, MPNetPretrainedModel, phase_losses
from toolbox.torchaudio.models.mpnet.utils import mag_pha_stft, mag_pha_istft
from toolbox.torchaudio.models.mpnet.metrics import run_batch_pesq, run_pesq_score


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--train_dataset", default="train.xlsx", type=str)
    parser.add_argument("--valid_dataset", default="valid.xlsx", type=str)

    parser.add_argument("--max_epochs", default=100, type=int)

    parser.add_argument("--num_serialized_models_to_keep", default=10, type=int)
    parser.add_argument("--patience", default=5, type=int)
    parser.add_argument("--serialization_dir", default="serialization_dir", type=str)

    parser.add_argument("--config_file", default="config.yaml", type=str)

    args = parser.parse_args()
    return args


def logging_config(file_dir: str):
    fmt = "%(asctime)s - %(name)s - %(levelname)s  %(filename)s:%(lineno)d >  %(message)s"

    logging.basicConfig(format=fmt,
                        datefmt="%m/%d/%Y %H:%M:%S",
                        level=logging.INFO)
    file_handler = TimedRotatingFileHandler(
        filename=os.path.join(file_dir, "main.log"),
        encoding="utf-8",
        when="D",
        interval=1,
        backupCount=7
    )
    file_handler.setLevel(logging.INFO)
    file_handler.setFormatter(logging.Formatter(fmt))
    logger = logging.getLogger(__name__)
    logger.addHandler(file_handler)

    return logger


class CollateFunction(object):
    def __init__(self):
        pass

    def __call__(self, batch: List[dict]):
        clean_audios = list()
        noisy_audios = list()

        for sample in batch:
            # noise_wave: torch.Tensor = sample["noise_wave"]
            clean_audio: torch.Tensor = sample["speech_wave"]
            noisy_audio: torch.Tensor = sample["mix_wave"]
            # snr_db: float = sample["snr_db"]

            clean_audios.append(clean_audio)
            noisy_audios.append(noisy_audio)

        clean_audios = torch.stack(clean_audios)
        noisy_audios = torch.stack(noisy_audios)

        # assert
        if torch.any(torch.isnan(clean_audios)) or torch.any(torch.isinf(clean_audios)):
            raise AssertionError("nan or inf in clean_audios")
        if torch.any(torch.isnan(noisy_audios)) or torch.any(torch.isinf(noisy_audios)):
            raise AssertionError("nan or inf in noisy_audios")
        return clean_audios, noisy_audios


collate_fn = CollateFunction()


def main():
    args = get_args()

    config = MPNetConfig.from_pretrained(
        pretrained_model_name_or_path=args.config_file,
    )

    serialization_dir = Path(args.serialization_dir)
    serialization_dir.mkdir(parents=True, exist_ok=True)

    logger = logging_config(serialization_dir)

    random.seed(config.seed)
    np.random.seed(config.seed)
    torch.manual_seed(config.seed)
    logger.info(f"set seed: {config.seed}")

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    n_gpu = torch.cuda.device_count()
    logger.info(f"GPU available count: {n_gpu}; device: {device}")

    # datasets
    train_dataset = DenoiseExcelDataset(
        excel_file=args.train_dataset,
        expected_sample_rate=8000,
        max_wave_value=32768.0,
    )
    valid_dataset = DenoiseExcelDataset(
        excel_file=args.valid_dataset,
        expected_sample_rate=8000,
        max_wave_value=32768.0,
    )
    train_data_loader = DataLoader(
        dataset=train_dataset,
        batch_size=config.batch_size,
        shuffle=True,
        sampler=None,
        # Linux 系统中可以使用多个子进程加载数据, 而在 Windows 系统中不能.
        num_workers=0 if platform.system() == "Windows" else os.cpu_count() // 2,
        collate_fn=collate_fn,
        pin_memory=False,
        # prefetch_factor=64,
    )
    valid_data_loader = DataLoader(
        dataset=valid_dataset,
        batch_size=config.batch_size,
        shuffle=True,
        sampler=None,
        # Linux 系统中可以使用多个子进程加载数据, 而在 Windows 系统中不能.
        num_workers=0 if platform.system() == "Windows" else os.cpu_count() // 2,
        collate_fn=collate_fn,
        pin_memory=False,
        # prefetch_factor=64,
    )

    # models
    logger.info(f"prepare models. config_file: {args.config_file}")
    generator = MPNetPretrainedModel(config).to(device)
    discriminator = MetricDiscriminatorPretrainedModel(config).to(device)

    # optimizer
    logger.info("prepare optimizer, lr_scheduler")
    num_params = 0
    for p in generator.parameters():
        num_params += p.numel()
    logger.info("total parameters (generator): {:.3f}M".format(num_params/1e6))

    optim_g = torch.optim.AdamW(generator.parameters(), config.learning_rate, betas=[config.adam_b1, config.adam_b2])
    optim_d = torch.optim.AdamW(discriminator.parameters(), config.learning_rate, betas=[config.adam_b1, config.adam_b2])

    # resume training
    last_epoch = -1
    for epoch_i in serialization_dir.glob("epoch-*"):
        epoch_i = Path(epoch_i)
        epoch_idx = epoch_i.stem.split("-")[1]
        epoch_idx = int(epoch_idx)
        if epoch_idx > last_epoch:
            last_epoch = epoch_idx

    if last_epoch != -1:
        logger.info(f"resume from epoch-{last_epoch}.")
        generator_pt = serialization_dir / f"epoch-{last_epoch}/generator.pt"
        discriminator_pt = serialization_dir / f"epoch-{last_epoch}/discriminator.pt"
        optim_g_pth = serialization_dir / f"epoch-{last_epoch}/optim_g.pth"
        optim_d_pth = serialization_dir / f"epoch-{last_epoch}/optim_d.pth"

        logger.info(f"load state dict for generator.")
        with open(generator_pt.as_posix(), "rb") as f:
            state_dict = torch.load(f, map_location="cpu", weights_only=True)
        generator.load_state_dict(state_dict, strict=True)
        logger.info(f"load state dict for discriminator.")
        with open(discriminator_pt.as_posix(), "rb") as f:
            state_dict = torch.load(f, map_location="cpu", weights_only=True)
        discriminator.load_state_dict(state_dict, strict=True)

        logger.info(f"load state dict for optim_g.")
        with open(optim_g_pth.as_posix(), "rb") as f:
            state_dict = torch.load(f, map_location="cpu", weights_only=True)
        optim_g.load_state_dict(state_dict)
        logger.info(f"load state dict for optim_d.")
        with open(optim_d_pth.as_posix(), "rb") as f:
            state_dict = torch.load(f, map_location="cpu", weights_only=True)
        optim_d.load_state_dict(state_dict)

    scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=config.lr_decay, last_epoch=last_epoch)
    scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=config.lr_decay, last_epoch=last_epoch)

    # training loop

    # state
    loss_d = 10000000000
    loss_g = 10000000000
    pesq_metric = 10000000000
    mag_err = 10000000000
    pha_err = 10000000000
    com_err = 10000000000
    stft_err = 10000000000

    model_list = list()
    best_idx_epoch = None
    best_metric = None
    patience_count = 0

    logger.info("training")
    for idx_epoch in range(max(0, last_epoch+1), args.max_epochs):
        # train
        generator.train()
        discriminator.train()

        total_loss_d = 0.
        total_loss_g = 0.
        total_batches = 0.
        progress_bar = tqdm(
            total=len(train_data_loader),
            desc="Training; epoch: {}".format(idx_epoch),
        )
        for batch in train_data_loader:
            clean_audio, noisy_audio = batch
            clean_audio = clean_audio.to(device)
            noisy_audio = noisy_audio.to(device)
            one_labels = torch.ones(clean_audio.shape[0]).to(device)

            clean_mag, clean_pha, clean_com = mag_pha_stft(clean_audio, config.n_fft, config.hop_size, config.win_size, config.compress_factor)
            noisy_mag, noisy_pha, noisy_com = mag_pha_stft(noisy_audio, config.n_fft, config.hop_size, config.win_size, config.compress_factor)

            mag_g, pha_g, com_g = generator.forward(noisy_mag, noisy_pha)

            audio_g = mag_pha_istft(mag_g, pha_g, config.n_fft, config.hop_size, config.win_size, config.compress_factor)
            mag_g_hat, pha_g_hat, com_g_hat = mag_pha_stft(audio_g, config.n_fft, config.hop_size, config.win_size, config.compress_factor)

            audio_list_r, audio_list_g = list(clean_audio.cpu().numpy()), list(audio_g.detach().cpu().numpy())
            pesq_score_list: List[float] = run_batch_pesq(audio_list_r, audio_list_g, sample_rate=config.sample_rate, mode="nb")

            # Discriminator
            optim_d.zero_grad()
            metric_r = discriminator.forward(clean_mag, clean_mag)
            metric_g = discriminator.forward(clean_mag, mag_g_hat.detach())
            loss_disc_r = F.mse_loss(one_labels, metric_r.flatten())

            if -1 in pesq_score_list:
                # print("-1 in batch_pesq_score!")
                loss_disc_g = 0
            else:
                pesq_score_list: torch.FloatTensor = torch.tensor([(score - 1) / 3.5 for score in pesq_score_list], dtype=torch.float32)
                loss_disc_g = F.mse_loss(pesq_score_list.to(device), metric_g.flatten())

            loss_disc_all = loss_disc_r + loss_disc_g
            loss_disc_all.backward()
            optim_d.step()

            # Generator
            optim_g.zero_grad()
            # L2 Magnitude Loss
            loss_mag = F.mse_loss(clean_mag, mag_g)
            # Anti-wrapping Phase Loss
            loss_ip, loss_gd, loss_iaf = phase_losses(clean_pha, pha_g)
            loss_pha = loss_ip + loss_gd + loss_iaf
            # L2 Complex Loss
            loss_com = F.mse_loss(clean_com, com_g) * 2
            # L2 Consistency Loss
            loss_stft = F.mse_loss(com_g, com_g_hat) * 2
            # Time Loss
            loss_time = F.l1_loss(clean_audio, audio_g)
            # Metric Loss
            metric_g = discriminator.forward(clean_mag, mag_g_hat)
            loss_metric = F.mse_loss(metric_g.flatten(), one_labels)

            loss_gen_all = loss_mag * 0.9 + loss_pha * 0.3  + loss_com * 0.1 + loss_stft * 0.1 + loss_metric * 0.05 + loss_time * 0.2

            loss_gen_all.backward()
            optim_g.step()

            total_loss_d += loss_disc_all.item()
            total_loss_g += loss_gen_all.item()
            total_batches += 1

            loss_d = round(total_loss_d / total_batches, 4)
            loss_g = round(total_loss_g / total_batches, 4)

            progress_bar.update(1)
            progress_bar.set_postfix({
                "loss_d": loss_d,
                "loss_g": loss_g,
            })

        # evaluation
        generator.eval()
        discriminator.eval()

        torch.cuda.empty_cache()
        total_pesq_score = 0.
        total_mag_err = 0.
        total_pha_err = 0.
        total_com_err = 0.
        total_stft_err = 0.
        total_batches = 0.

        progress_bar = tqdm(
            total=len(valid_data_loader),
            desc="Evaluation; epoch: {}".format(idx_epoch),
        )
        with torch.no_grad():
            for batch in valid_data_loader:
                clean_audio, noisy_audio = batch
                clean_audio = clean_audio.to(device)
                noisy_audio = noisy_audio.to(device)

                clean_mag, clean_pha, clean_com = mag_pha_stft(clean_audio, config.n_fft, config.hop_size, config.win_size, config.compress_factor)
                noisy_mag, noisy_pha, noisy_com = mag_pha_stft(noisy_audio, config.n_fft, config.hop_size, config.win_size, config.compress_factor)

                mag_g, pha_g, com_g = generator.forward(noisy_mag, noisy_pha)

                audio_g = mag_pha_istft(mag_g, pha_g, config.n_fft, config.hop_size, config.win_size, config.compress_factor)
                mag_g_hat, pha_g_hat, com_g_hat = mag_pha_stft(audio_g, config.n_fft, config.hop_size, config.win_size, config.compress_factor)

                clean_audio_list = torch.split(clean_audio, 1, dim=0)
                enhanced_audio_list = torch.split(audio_g, 1, dim=0)
                clean_audio_list = [t.squeeze().cpu().numpy() for t in clean_audio_list]
                enhanced_audio_list = [t.squeeze().cpu().numpy() for t in enhanced_audio_list]
                pesq_score = run_pesq_score(
                    clean_audio_list,
                    enhanced_audio_list,
                    sample_rate = config.sample_rate,
                    mode = "nb",
                )
                total_pesq_score += pesq_score
                total_mag_err += F.mse_loss(clean_mag, mag_g).item()
                val_ip_err, val_gd_err, val_iaf_err = phase_losses(clean_pha, pha_g)
                total_pha_err += (val_ip_err + val_gd_err + val_iaf_err).item()
                total_com_err += F.mse_loss(clean_com, com_g).item()
                total_stft_err += F.mse_loss(com_g, com_g_hat).item()

                total_batches += 1

                pesq_metric = round(total_pesq_score / total_batches, 4)
                mag_err = round(total_mag_err / total_batches, 4)
                pha_err = round(total_pha_err / total_batches, 4)
                com_err = round(total_com_err / total_batches, 4)
                stft_err = round(total_stft_err / total_batches, 4)

                progress_bar.update(1)
                progress_bar.set_postfix({
                    "pesq_metric": pesq_metric,
                    "mag_err": mag_err,
                    "pha_err": pha_err,
                    "com_err": com_err,
                    "stft_err": stft_err,
                })

        # scheduler
        scheduler_g.step()
        scheduler_d.step()

        # save path
        epoch_dir = serialization_dir / "epoch-{}".format(idx_epoch)
        epoch_dir.mkdir(parents=True, exist_ok=False)

        # save models
        generator.save_pretrained(epoch_dir.as_posix())
        discriminator.save_pretrained(epoch_dir.as_posix())

        # save optim
        torch.save(optim_d.state_dict(), (epoch_dir / "optim_d.pth").as_posix())
        torch.save(optim_g.state_dict(), (epoch_dir / "optim_g.pth").as_posix())

        model_list.append(epoch_dir)
        if len(model_list) >= args.num_serialized_models_to_keep:
            model_to_delete: Path = model_list.pop(0)
            shutil.rmtree(model_to_delete.as_posix())

        # save metric
        if best_metric is None:
            best_idx_epoch = idx_epoch
            best_metric = pesq_metric
        elif pesq_metric > best_metric:
            # great is better.
            best_idx_epoch = idx_epoch
            best_metric = pesq_metric
        else:
            pass

        metrics = {
            "idx_epoch": idx_epoch,
            "best_idx_epoch": best_idx_epoch,
            "loss_d": loss_d,
            "loss_g": loss_g,

            "pesq_metric": pesq_metric,
            "mag_err": mag_err,
            "pha_err": pha_err,
            "com_err": com_err,
            "stft_err": stft_err,

        }
        metrics_filename = epoch_dir / "metrics_epoch.json"
        with open(metrics_filename, "w", encoding="utf-8") as f:
            json.dump(metrics, f, indent=4, ensure_ascii=False)

        # save best
        best_dir = serialization_dir / "best"
        if best_idx_epoch == idx_epoch:
            if best_dir.exists():
                shutil.rmtree(best_dir)
            shutil.copytree(epoch_dir, best_dir)

        # early stop
        early_stop_flag = False
        if best_idx_epoch == idx_epoch:
            patience_count = 0
        else:
            patience_count += 1
        if patience_count >= args.patience:
            early_stop_flag = True

        # early stop
        if early_stop_flag:
            break

    return


if __name__ == "__main__":
    main()