File size: 1,552 Bytes
294430e
 
365fc03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
294430e
 
 
365fc03
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import argparse
import logging
import os
from pathlib import Path
import sys
import uuid

pwd = os.path.abspath(os.path.dirname(__file__))
sys.path.append(os.path.join(pwd, "../../"))

import librosa
import numpy as np
import pandas as pd
from scipy.io import wavfile
import torch
import torch.nn as nn
import torchaudio
from tqdm import tqdm

from toolbox.torchaudio.models.mpnet.configuration_mpnet import MPNetConfig
from toolbox.torchaudio.models.mpnet.modeling_mpnet import MPNetPretrainedModel
from toolbox.torchaudio.models.mpnet.utils import mag_pha_stft, mag_pha_istft


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--valid_dataset", default="valid.xlsx", type=str)
    parser.add_argument("--model_dir", default="serialization_dir/best", type=str)
    parser.add_argument("--evaluation_audio_dir", default="evaluation_audio_dir", type=str)

    parser.add_argument("--limit", default=10, type=int)

    args = parser.parse_args()
    return args


def logging_config():
    fmt = "%(asctime)s - %(name)s - %(levelname)s  %(filename)s:%(lineno)d >  %(message)s"

    logging.basicConfig(format=fmt,
                        datefmt="%m/%d/%Y %H:%M:%S",
                        level=logging.INFO)
    stream_handler = logging.StreamHandler()
    stream_handler.setLevel(logging.INFO)
    stream_handler.setFormatter(logging.Formatter(fmt))

    logger = logging.getLogger(__name__)

    return logger


def main():
    return


if __name__ == '__main__':
    main()