File size: 2,009 Bytes
e27a095
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import math


def anneal_linear(start, end, proportion):
    return start + proportion * (end - start)


def anneal_cosine(start, end, proportion):
    cos_val = math.cos(math.pi * proportion) + 1
    return end + (start - end) / 2 * cos_val


class Phase:
    def __init__(self, start, end, n_iter, cur_iter, anneal_fn):
        self.start, self.end = start, end
        self.n_iter = n_iter
        self.anneal_fn = anneal_fn
        self.n = cur_iter

    def step(self):
        self.n += 1

        return self.anneal_fn(self.start, self.end, self.n / self.n_iter)

    def reset(self):
        self.n = 0

    @property
    def is_done(self):
        return self.n >= self.n_iter


class LinearWarmupCosineDecay(object):
    def __init__(
        self,
        optimizer,
        lr_max,
        n_iter,
        iteration=0,
        divider=25,
        warmup_proportion=0.3,
        phase=('linear', 'cosine'),
    ):
        self.optimizer = optimizer

        phase1 = int(n_iter * warmup_proportion)
        phase2 = n_iter - phase1
        lr_min = lr_max / divider

        phase_map = {'linear': anneal_linear, 'cosine': anneal_cosine}

        cur_iter_phase1 = iteration
        cur_iter_phase2 = max(0, iteration - phase1)
        self.lr_phase = [
            Phase(lr_min, lr_max, phase1, cur_iter_phase1, phase_map[phase[0]]),
            Phase(lr_max, lr_min / 1e4, phase2, cur_iter_phase2, phase_map[phase[1]]),
        ]

        if iteration < phase1:
            self.phase = 0
        else:
            self.phase = 1

    def step(self):
        lr = self.lr_phase[self.phase].step()

        for group in self.optimizer.param_groups:
            group['lr'] = lr

        if self.lr_phase[self.phase].is_done:
            self.phase += 1

        if self.phase >= len(self.lr_phase):
            for phase in self.lr_phase:
                phase.reset()

            self.phase = 0

        return lr


if __name__ == '__main__':
    pass