File size: 5,735 Bytes
bd94e77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import math

import numpy as np


def freq2erb(freq_hz: float) -> float:
    """
    https://www.cnblogs.com/LXP-Never/p/16011229.html
    1 / (24.7 * 9.265) = 0.00436976
    """
    return 9.265 * math.log(freq_hz / (24.7 * 9.265) + 1)


def erb2freq(n_erb: float) -> float:
    return 24.7 * 9.265 * (math.exp(n_erb / 9.265) - 1)


def get_erb_widths(sample_rate: int, fft_size: int, erb_bins: int, min_freq_bins_for_erb: int) -> np.ndarray:
    """
    https://github.com/Rikorose/DeepFilterNet/blob/main/libDF/src/lib.rs
    :param sample_rate:
    :param fft_size:
    :param erb_bins: erb (Equivalent Rectangular Bandwidth) 等效矩形带宽的通道数.
    :param min_freq_bins_for_erb: Minimum number of frequency bands per erb band
    :return:
    """
    nyq_freq = sample_rate / 2.
    freq_width: float = sample_rate / fft_size

    min_erb: float = freq2erb(0.)
    max_erb: float = freq2erb(nyq_freq)

    erb = [0] * erb_bins
    step = (max_erb - min_erb) / erb_bins

    prev_freq_bin = 0
    freq_over = 0
    for i in range(1, erb_bins + 1):
        f = erb2freq(min_erb + i * step)
        freq_bin = int(round(f / freq_width))
        freq_bins = freq_bin - prev_freq_bin - freq_over

        if freq_bins < min_freq_bins_for_erb:
            freq_over = min_freq_bins_for_erb - freq_bins
            freq_bins = min_freq_bins_for_erb
        else:
            freq_over = 0
        erb[i - 1] = freq_bins
        prev_freq_bin = freq_bin

    erb[erb_bins - 1] += 1
    too_large = sum(erb) - (fft_size / 2 + 1)
    if too_large > 0:
        erb[erb_bins - 1] -= too_large
    return np.array(erb, dtype=np.uint64)


def get_erb_filter_bank(erb_widths: np.ndarray,
                        sample_rate: int,
                        normalized: bool = True,
                        inverse: bool = False,
                        ):
    num_freq_bins = int(np.sum(erb_widths))
    num_erb_bins = len(erb_widths)

    fb: np.ndarray = np.zeros(shape=(num_freq_bins, num_erb_bins))

    points = np.cumsum([0] + erb_widths.tolist()).astype(int)[:-1]
    for i, (b, w) in enumerate(zip(points.tolist(), erb_widths.tolist())):
        fb[b: b + w, i] = 1

    if inverse:
        fb = fb.T
        if not normalized:
            fb /= np.sum(fb, axis=1, keepdims=True)
    else:
        if normalized:
            fb /= np.sum(fb, axis=0)
    return fb


def spec2erb(spec: np.ndarray, erb_fb: np.ndarray, db: bool = True):
    """
    ERB filterbank and transform to decibel scale.

    :param spec: Spectrum of shape [B, C, T, F].
    :param erb_fb: ERB filterbank array of shape [B] containing the ERB widths,
            where B are the number of ERB bins.
    :param db: Whether to transform the output into decibel scale. Defaults to `True`.
    :return:
    """
    # complex spec to power spec. (real * real + image * image)
    spec_ = np.abs(spec) ** 2

    # spec to erb feature.
    erb_feat = np.matmul(spec_, erb_fb)

    if db:
        erb_feat = 10 * np.log10(erb_feat + 1e-10)

    erb_feat = np.array(erb_feat, dtype=np.float32)
    return erb_feat


def _calculate_norm_alpha(sample_rate: int, hop_size: int, tau: float):
    """Exponential decay factor alpha for a given tau (decay window size [s])."""
    dt = hop_size / sample_rate
    result = math.exp(-dt / tau)
    return result


def get_norm_alpha(sample_rate: int, hop_size: int, norm_tau: float) -> float:
    a_ = _calculate_norm_alpha(sample_rate=sample_rate, hop_size=hop_size, tau=norm_tau)

    precision = 3
    a = 1.0
    while a >= 1.0:
        a = round(a_, precision)
        precision += 1

    return a


MEAN_NORM_INIT = [-60., -90.]


def make_erb_norm_state(erb_bins: int, channels: int) -> np.ndarray:
    state = np.linspace(MEAN_NORM_INIT[0], MEAN_NORM_INIT[1], erb_bins)
    state = np.expand_dims(state, axis=0)
    state = np.repeat(state, channels, axis=0)

    # state shape: (audio_channels, erb_bins)
    return state


def erb_normalize(erb_feat: np.ndarray, alpha: float, state: np.ndarray = None):
    erb_feat = np.copy(erb_feat)
    batch_size, time_steps, erb_bins = erb_feat.shape

    if state is None:
        state = make_erb_norm_state(erb_bins, erb_feat.shape[0])
        # state = np.linspace(MEAN_NORM_INIT[0], MEAN_NORM_INIT[1], erb_bins)
        # state = np.expand_dims(state, axis=0)
        # state = np.repeat(state, erb_feat.shape[0], axis=0)

    for i in range(batch_size):
        for j in range(time_steps):
            for k in range(erb_bins):
                x = erb_feat[i][j][k]
                s = state[i][k]

                state[i][k] = x * (1. - alpha) + s * alpha
                erb_feat[i][j][k] -= state[i][k]
                erb_feat[i][j][k] /= 40.

    return erb_feat


UNIT_NORM_INIT = [0.001, 0.0001]


def make_spec_norm_state(df_bins: int, channels: int) -> np.ndarray:
    state = np.linspace(UNIT_NORM_INIT[0], UNIT_NORM_INIT[1], df_bins)
    state = np.expand_dims(state, axis=0)
    state = np.repeat(state, channels, axis=0)

    # state shape: (audio_channels, df_bins)
    return state


def spec_normalize(spec_feat: np.ndarray, alpha: float, state: np.ndarray = None):
    spec_feat = np.copy(spec_feat)
    batch_size, time_steps, df_bins = spec_feat.shape

    if state is None:
        state = make_spec_norm_state(df_bins, spec_feat.shape[0])

    for i in range(batch_size):
        for j in range(time_steps):
            for k in range(df_bins):
                x = spec_feat[i][j][k]
                s = state[i][k]

                state[i][k] = np.abs(x) * (1. - alpha) + s * alpha
                spec_feat[i][j][k] /= np.sqrt(state[i][k])
    return spec_feat


if __name__ == '__main__':
    pass