File size: 13,125 Bytes
8c3c188
 
 
 
35a4689
 
 
 
8c3c188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd3d872
8c3c188
 
 
 
bd3d872
 
8c3c188
 
 
 
 
 
 
 
 
bd3d872
 
8c3c188
 
 
 
 
 
 
bd3d872
8c3c188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd3d872
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c3c188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f239cae
8c3c188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd3d872
 
 
8c3c188
 
 
bd3d872
 
8c3c188
bd3d872
 
 
 
8c3c188
bd3d872
8c3c188
bd3d872
 
 
 
 
 
8c3c188
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
#!/usr/bin/python3
# -*- coding: utf-8 -*-
"""
https://github.com/AkenoSyuRi/DTLNPytorch

https://github.com/breizhn/DTLN
在 dns3 500个小时的数据上训练, 在 dns3 的测试集上达到了 pesq 3.04 的水平。

"""
import os
from typing import Optional, Union

import torch
import torch.nn as nn
from torch.nn import functional as F

from toolbox.torchaudio.configuration_utils import CONFIG_FILE
from toolbox.torchaudio.modules.conv_stft import ConvSTFT, ConviSTFT
from toolbox.torchaudio.models.dtln.configuration_dtln import DTLNConfig


class InstantLayerNormalization(nn.Module):
    """
    Class implementing instant layer normalization. It can also be called
    channel-wise layer normalization and was proposed by
    Luo & Mesgarani (https://arxiv.org/abs/1809.07454v2)
    """

    def __init__(self, channels):
        super(InstantLayerNormalization, self).__init__()
        self.epsilon = 1e-7
        self.gamma = nn.Parameter(torch.ones(1, 1, channels), requires_grad=True)
        self.beta = nn.Parameter(torch.zeros(1, 1, channels), requires_grad=True)
        self.register_parameter("gamma", self.gamma)
        self.register_parameter("beta", self.beta)

    def forward(self, inputs: torch.Tensor):
        # calculate mean of each frame
        mean = torch.mean(inputs, dim=-1, keepdim=True)

        # calculate variance of each frame
        variance = torch.mean(torch.square(inputs - mean), dim=-1, keepdim=True)
        # calculate standard deviation
        std = torch.sqrt(variance + self.epsilon)
        outputs = (inputs - mean) / std
        # scale with gamma
        outputs = outputs * self.gamma
        # add the bias beta
        outputs = outputs + self.beta
        # return output
        return outputs


class SeperationBlock(nn.Module):
    def __init__(self,
                 input_size: int = 257,
                 hidden_size: int = 128,
                 dropout: float = 0.25,
                 ):
        super(SeperationBlock, self).__init__()
        self.rnn1 = nn.LSTM(input_size=input_size,
                            hidden_size=hidden_size,
                            num_layers=1,
                            batch_first=True,
                            dropout=0.0,
                            bidirectional=False,
                            )
        self.rnn2 = nn.LSTM(input_size=hidden_size,
                            hidden_size=hidden_size,
                            num_layers=1,
                            batch_first=True,
                            dropout=0.0,
                            bidirectional=False,
                            )
        self.drop = nn.Dropout(dropout)

        self.dense = nn.Linear(hidden_size, input_size)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x: torch.Tensor, in_states: torch.Tensor = None):
        if in_states is None:
            hx1 = None
            hx2 = None
        else:
            h1_in, c1_in = in_states[:1, :, :, 0], in_states[:1, :, :, 1]
            h2_in, c2_in = in_states[1:, :, :, 0], in_states[1:, :, :, 1]
            hx1 = (h1_in, c1_in)
            hx2 = (h2_in, c2_in)

        x1, (h1, c1) = self.rnn1.forward(x, hx=hx1)
        x1 = self.drop(x1)
        x2, (h2, c2) = self.rnn2.forward(x1, hx=hx2)
        x2 = self.drop(x2)

        mask = self.dense(x2)
        mask = self.sigmoid(mask)

        h = torch.cat((h1, h2), dim=0)
        c = torch.cat((c1, c2), dim=0)
        out_states = torch.stack((h, c), dim=-1)
        return mask, out_states


MODEL_FILE = "model.pt"


class DTLNModel(nn.Module):
    def __init__(self,
                 fft_size: int = 512,
                 hop_size: int = 128,
                 win_type: str = "hamming",
                 encoder_size: int = 256,
                 ):
        super(DTLNModel, self).__init__()
        self.fft_size = fft_size
        self.hop_size = hop_size
        self.encoder_size = encoder_size

        self.stft = ConvSTFT(
            nfft=fft_size,
            win_size=fft_size,
            hop_size=hop_size,
            win_type=win_type,
            power=None,
            requires_grad=False
        )
        self.istft = ConviSTFT(
            nfft=fft_size,
            win_size=fft_size,
            hop_size=hop_size,
            win_type=win_type,
            requires_grad=False
        )

        self.sep1 = SeperationBlock(input_size=(fft_size // 2 + 1),
                                    hidden_size=128,
                                    dropout=0.25,
                                    )

        self.encoder_conv1 = nn.Conv1d(in_channels=fft_size,
                                       out_channels=self.encoder_size,
                                       kernel_size=1,
                                       stride=1,
                                       bias=False,
                                       )

        # self.encoder_norm1 = nn.InstanceNorm1d(num_features=self.encoder_size, eps=1e-7, affine=True)
        self.encoder_norm1 = InstantLayerNormalization(channels=self.encoder_size)

        self.sep2 = SeperationBlock(input_size=self.encoder_size,
                                    hidden_size=128,
                                    dropout=0.25,
                                    )

        self.decoder_conv1 = nn.Conv1d(in_channels=self.encoder_size,
                                       out_channels=fft_size,
                                       kernel_size=1,
                                       stride=1,
                                       bias=False,
                                       )

    def signal_prepare(self, signal: torch.Tensor) -> torch.Tensor:
        if signal.dim() == 2:
            signal = torch.unsqueeze(signal, dim=1)
        _, _, n_samples = signal.shape
        remainder = (n_samples - self.fft_size) % self.hop_size
        if remainder > 0:
            n_samples_pad = self.hop_size - remainder
            signal = F.pad(signal, pad=(0, n_samples_pad), mode="constant", value=0)
        return signal

    def forward(self,
                noisy: torch.Tensor,
                ):
        num_samples = noisy.shape[-1]
        noisy = self.signal_prepare(noisy)
        batch_size, _, num_samples_pad = noisy.shape
        # print(f"num_samples: {num_samples}, num_samples_pad: {num_samples_pad}")

        denoise_frame, _, _ = self.forward_chunk(noisy)
        denoise = self.denoise_frame_to_denoise(denoise_frame, batch_size, num_samples_pad)
        # denoise shape: [b, num_samples_pad]

        denoise = denoise[:, :num_samples]
        # denoise shape: [b, num_samples]
        denoise = torch.unsqueeze(denoise, dim=1)
        # denoise shape: [b, 1, num_samples]
        return denoise

    def forward_chunk(self,
                      noisy: torch.Tensor,
                      in_state1: torch.Tensor = None,
                      in_state2: torch.Tensor = None,
                      ):
        # noisy shape: [b, 1, num_samples]
        spec = self.stft.forward(noisy)
        # spec shape: [b, f, t], torch.complex64
        # t = (num_samples - win_size) / hop_size + 1
        spec = torch.view_as_real(spec)
        # spec shape: [b, f, t, 2]
        real = spec[..., 0]
        imag = spec[..., 1]
        mag = torch.sqrt(real ** 2 + imag ** 2)
        phase = torch.atan2(imag, real)
        # shape: [b, f, t]
        mag = mag.permute(0, 2, 1)
        phase = phase.permute(0, 2, 1)
        # shape: [b, t, f]

        mask, out_state1 = self.sep1.forward(mag, in_state1)
        # mask shape: [b, t, f]
        estimated_mag = mask * mag

        s1_stft = estimated_mag * torch.exp((1j * phase))
        # s1_stft shape: [b, t, f], torch.complex64
        y1 = torch.fft.irfft2(s1_stft, dim=-1)
        # y1 shape: [b, t, fft_size], torch.float32
        y1 = y1.permute(0, 2, 1)
        # y1 shape: [b, fft_size, t]

        encoded_f = self.encoder_conv1.forward(y1)
        # shape: [b, c, t]
        encoded_f = encoded_f.permute(0, 2, 1)
        # shape: [b, t, c]
        encoded_f_norm = self.encoder_norm1.forward(encoded_f)
        # shape: [b, t, c]

        mask_2, out_state2 = self.sep2.forward(encoded_f_norm, in_state2)
        # shape: [b, t, c]
        estimated = mask_2 * encoded_f
        estimated = estimated.permute(0, 2, 1)
        # shape: [b, c, t]

        denoise_frame = self.decoder_conv1.forward(estimated)
        # shape: [b, fft_size, t]

        return denoise_frame, out_state1, out_state2

    def forward_chunk_by_chunk(self, noisy: torch.Tensor):
        noisy = self.signal_prepare(noisy)
        # noisy shape: [b, 1, num_samples]
        batch_size, _, num_samples_pad = noisy.shape
        # print(f"num_samples: {num_samples}, num_samples_pad: {num_samples_pad}")

        t = (num_samples_pad - self.fft_size) // self.hop_size + 1

        denoise_list = list()
        out_state1 = None
        out_state2 = None
        overlap_size = self.fft_size - self.hop_size
        denoise_cache = torch.zeros(size=(batch_size, overlap_size), dtype=noisy.dtype)
        # denoise_list.append(torch.clone(denoise_cache))
        for i in range(t):
            begin = i * self.hop_size
            end = begin + self.fft_size
            sub_noisy = noisy[:, :, begin: end]
            # noisy shape: [b, 1, frame_size]
            with torch.no_grad():
                sub_denoise_frame, out_state1, out_state2 = self.forward_chunk(sub_noisy, out_state1, out_state2)
            # sub_denoise_frame shape: [b, fft_size, 1]
            sub_denoise_frame = sub_denoise_frame[:, :, 0]
            # sub_denoise_frame shape: [b, fft_size]

            sub_denoise_frame[:, :overlap_size] += denoise_cache
            denoise_out = sub_denoise_frame[:, :self.hop_size]
            denoise_cache = sub_denoise_frame[:, self.hop_size:]
            # denoise_cache shape: [b, hop_size]

            denoise_list.append(denoise_out)

        denoise = torch.concat(denoise_list, dim=-1)
        # denoise shape: [b, num_samples]
        denoise = torch.unsqueeze(denoise, dim=1)
        # denoise shape: [b, 1, num_samples]
        return denoise

    def denoise_frame_to_denoise(self, denoise_frame: torch.Tensor, batch_size: int, num_samples: int):
        # overlap and add

        # denoise_frame shape: [b, fft_size, t]
        denoise = torch.nn.functional.fold(
            denoise_frame,
            output_size=(num_samples, 1),
            kernel_size=(self.fft_size, 1),
            padding=(0, 0),
            stride=(self.hop_size, 1),
        )
        # denoise shape: [b, 1, num_samples, 1]
        denoise = denoise.reshape(batch_size, -1)
        # denoise shape: [b, num_samples]
        return denoise


class DTLNPretrainedModel(DTLNModel):
    def __init__(self,
                 config: DTLNConfig,
                 ):
        super(DTLNPretrainedModel, self).__init__(
            fft_size=config.fft_size,
            hop_size=config.hop_size,
            win_type=config.win_type,
            encoder_size=config.encoder_size,
        )
        self.config = config

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
        config = DTLNConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)

        model = cls(config)

        if os.path.isdir(pretrained_model_name_or_path):
            ckpt_file = os.path.join(pretrained_model_name_or_path, MODEL_FILE)
        else:
            ckpt_file = pretrained_model_name_or_path

        with open(ckpt_file, "rb") as f:
            state_dict = torch.load(f, map_location="cpu", weights_only=True)
        model.load_state_dict(state_dict, strict=True)
        return model

    def save_pretrained(self,
                        save_directory: Union[str, os.PathLike],
                        state_dict: Optional[dict] = None,
                        ):

        model = self

        if state_dict is None:
            state_dict = model.state_dict()

        os.makedirs(save_directory, exist_ok=True)

        # save state dict
        model_file = os.path.join(save_directory, MODEL_FILE)
        torch.save(state_dict, model_file)

        # save config
        config_file = os.path.join(save_directory, CONFIG_FILE)
        self.config.to_yaml_file(config_file)
        return save_directory


def main():
    config = DTLNConfig()
    model = DTLNPretrainedModel(config)
    model.eval()

    noisy = torch.randn(size=(1, 16000), dtype=torch.float32)

    with torch.no_grad():
        denoise = model.forward(noisy)
    print(f"denoise.shape: {denoise.shape}")
    print(denoise[:, :, 300: 302])
    print(denoise[:, :, 15680: 15682])
    print(denoise[:, :, 15760: 15762])
    print(denoise[:, :, 15840: 15842])

    denoise = model.forward_chunk_by_chunk(noisy)
    print(f"denoise.shape: {denoise.shape}")
    # denoise = denoise[:, :, (config.fft_size - config.hop_size):]
    print(denoise[:, :, 300: 302])
    print(denoise[:, :, 15680: 15682])
    print(denoise[:, :, 15760: 15762])
    print(denoise[:, :, 15840: 15842])

    return


if __name__ == "__main__":
    main()