File size: 4,095 Bytes
f74ae8e
 
f69c753
 
 
f74ae8e
 
 
 
 
 
 
f69c753
04e3488
f74ae8e
 
 
a88ebd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f74ae8e
 
 
 
 
 
 
 
 
 
 
 
f69c753
f74ae8e
f69c753
 
 
f74ae8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f69c753
 
 
 
 
 
 
 
 
 
20d2f3e
f69c753
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f74ae8e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import os
from typing import Optional, Union

import torch
import torch.nn as nn
import numpy as np
import torch.nn.functional as F
from pesq import pesq
from joblib import Parallel, delayed

from toolbox.torchaudio.configuration_utils import CONFIG_FILE
from toolbox.torchaudio.models.mpnet.configuration_mpnet import MPNetConfig
from toolbox.torchaudio.models.mpnet.utils import LearnableSigmoid1d


# def cal_pesq(clean, noisy, sr=16000):
#     try:
#         pesq_score = pesq(sr, clean, noisy, 'wb')
#     except:
#         # error can happen due to silent period
#         pesq_score = -1
#     return pesq_score


# def batch_pesq(clean, noisy):
#     pesq_score = Parallel(n_jobs=15)(delayed(cal_pesq)(c, n) for c, n in zip(clean, noisy))
#     pesq_score = np.array(pesq_score)
#     if -1 in pesq_score:
#         return None
#     pesq_score = (pesq_score - 1) / 3.5
#     return torch.FloatTensor(pesq_score)


def metric_loss(metric_ref, metrics_gen):
    loss = 0
    for metric_gen in metrics_gen:
        metric_loss = F.mse_loss(metric_ref, metric_gen.flatten())
        loss += metric_loss

    return loss


class MetricDiscriminator(nn.Module):
    def __init__(self, config: MPNetConfig):
        super(MetricDiscriminator, self).__init__()
        dim = config.discriminator_dim
        in_channel = config.discriminator_in_channel

        self.layers = nn.Sequential(
            nn.utils.spectral_norm(nn.Conv2d(in_channel, dim, (4,4), (2,2), (1,1), bias=False)),
            nn.InstanceNorm2d(dim, affine=True),
            nn.PReLU(dim),
            nn.utils.spectral_norm(nn.Conv2d(dim, dim*2, (4,4), (2,2), (1,1), bias=False)),
            nn.InstanceNorm2d(dim*2, affine=True),
            nn.PReLU(dim*2),
            nn.utils.spectral_norm(nn.Conv2d(dim*2, dim*4, (4,4), (2,2), (1,1), bias=False)),
            nn.InstanceNorm2d(dim*4, affine=True),
            nn.PReLU(dim*4),
            nn.utils.spectral_norm(nn.Conv2d(dim*4, dim*8, (4,4), (2,2), (1,1), bias=False)),
            nn.InstanceNorm2d(dim*8, affine=True),
            nn.PReLU(dim*8),
            nn.AdaptiveMaxPool2d(1),
            nn.Flatten(),
            nn.utils.spectral_norm(nn.Linear(dim*8, dim*4)),
            nn.Dropout(0.3),
            nn.PReLU(dim*4),
            nn.utils.spectral_norm(nn.Linear(dim*4, 1)),
            LearnableSigmoid1d(1)
        )

    def forward(self, x, y):
        xy = torch.stack((x, y), dim=1)
        return self.layers(xy)


MODEL_FILE = "discriminator.pt"


class MetricDiscriminatorPretrainedModel(MetricDiscriminator):
    def __init__(self,
                 config: MPNetConfig,
                 ):
        super(MetricDiscriminatorPretrainedModel, self).__init__(
            config=config,
        )
        self.config = config

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
        config = MPNetConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)

        model = cls(config)

        if os.path.isdir(pretrained_model_name_or_path):
            ckpt_file = os.path.join(pretrained_model_name_or_path, MODEL_FILE)
        else:
            ckpt_file = pretrained_model_name_or_path

        with open(ckpt_file, "rb") as f:
            state_dict = torch.load(f, map_location="cpu", weights_only=True)
        model.load_state_dict(state_dict, strict=True)
        return model

    def save_pretrained(self,
                        save_directory: Union[str, os.PathLike],
                        state_dict: Optional[dict] = None,
                        ):

        model = self

        if state_dict is None:
            state_dict = model.state_dict()

        os.makedirs(save_directory, exist_ok=True)

        # save state dict
        model_file = os.path.join(save_directory, MODEL_FILE)
        torch.save(state_dict, model_file)

        # save config
        config_file = os.path.join(save_directory, CONFIG_FILE)
        self.config.to_yaml_file(config_file)
        return save_directory


if __name__ == '__main__':
    pass