File size: 9,056 Bytes
8c3c188
 
 
 
 
ed91efa
8c3c188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85a1b16
 
 
8c3c188
85a1b16
8c3c188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85a1b16
 
8c3c188
 
 
 
 
 
 
 
 
 
85a1b16
 
8c3c188
 
85a1b16
8c3c188
85a1b16
 
 
 
 
8c3c188
 
85a1b16
 
 
 
8c3c188
 
85a1b16
8c3c188
 
 
85a1b16
8c3c188
85a1b16
8c3c188
85a1b16
8c3c188
 
9192cea
85a1b16
 
ed91efa
85a1b16
 
 
ed91efa
 
 
85a1b16
 
ed91efa
 
 
 
 
85a1b16
 
 
 
 
 
 
 
 
 
 
9192cea
 
 
85a1b16
 
9192cea
 
 
85a1b16
 
ed91efa
 
 
 
 
 
85a1b16
8c3c188
 
85a1b16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c3c188
85a1b16
 
 
 
 
 
 
 
 
 
 
8c3c188
 
85a1b16
 
 
 
8c3c188
 
 
 
 
85a1b16
 
ed91efa
85a1b16
 
 
 
 
 
ed91efa
85a1b16
 
 
 
 
 
8c3c188
 
 
 
 
85a1b16
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
#!/usr/bin/python3
# -*- coding: utf-8 -*-
"""
https://github.com/modelscope/modelscope/blob/master/modelscope/models/audio/ans/conv_stft.py
"""
from collections import defaultdict
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from scipy.signal import get_window


def init_kernels(nfft: int, win_size: int, hop_size: int, win_type: str = None, inverse=False):
    if win_type == "None" or win_type is None:
        window = np.ones(win_size)
    else:
        window = get_window(win_type, win_size, fftbins=True)**0.5

    fourier_basis = np.fft.rfft(np.eye(nfft))[:win_size]
    real_kernel = np.real(fourier_basis)
    image_kernel = np.imag(fourier_basis)
    kernel = np.concatenate([real_kernel, image_kernel], 1).T

    if inverse:
        kernel = np.linalg.pinv(kernel).T

    kernel = kernel * window
    kernel = kernel[:, None, :]
    result = (
        torch.from_numpy(kernel.astype(np.float32)),
        torch.from_numpy(window[None, :, None].astype(np.float32))
    )
    return result


class ConvSTFT(nn.Module):

    def __init__(self,
                 nfft: int,
                 win_size: int,
                 hop_size: int,
                 win_type: str = "hamming",
                 power: int = None,
                 requires_grad: bool = False):
        super(ConvSTFT, self).__init__()

        if nfft is None:
            self.nfft = int(2**np.ceil(np.log2(win_size)))
        else:
            self.nfft = nfft

        kernel, _ = init_kernels(self.nfft, win_size, hop_size, win_type)
        self.weight = nn.Parameter(kernel, requires_grad=requires_grad)

        self.win_size = win_size
        self.hop_size = hop_size

        self.stride = hop_size
        self.dim = self.nfft
        self.power = power

    def forward(self, waveform: torch.Tensor):
        if waveform.dim() == 2:
            waveform = torch.unsqueeze(waveform, 1)

        matrix = F.conv1d(waveform, self.weight, stride=self.stride)
        dim = self.dim // 2 + 1
        real = matrix[:, :dim, :]
        imag = matrix[:, dim:, :]
        spec = torch.complex(real, imag)
        # spec shape: [b, f, t], torch.complex64

        if self.power is None:
            return spec
        elif self.power == 1:
            mags = torch.sqrt(real**2 + imag**2)
            # phase = torch.atan2(imag, real)
            return mags
        elif self.power == 2:
            power = real**2 + imag**2
            return power
        else:
            raise AssertionError


class ConviSTFT(nn.Module):

    def __init__(self,
                 win_size: int,
                 hop_size: int,
                 nfft: int = None,
                 win_type: str = "hamming",
                 requires_grad: bool = False):
        super(ConviSTFT, self).__init__()
        if nfft is None:
            self.nfft = int(2**np.ceil(np.log2(win_size)))
        else:
            self.nfft = nfft

        kernel, window = init_kernels(self.nfft, win_size, hop_size, win_type, inverse=True)
        self.weight = nn.Parameter(kernel, requires_grad=requires_grad)
        # weight shape: [f*2, 1, nfft]
        # f = nfft // 2 + 1

        self.win_size = win_size
        self.hop_size = hop_size
        self.win_type = win_type

        self.stride = hop_size
        self.dim = self.nfft

        self.register_buffer("window", window)
        self.register_buffer("enframe", torch.eye(win_size)[:, None, :])
        # window shape: [1, nfft, 1]
        # enframe shape: [nfft, 1, nfft]

    def forward(self,
                spec: torch.Tensor):
        """
        self.weight shape: [f*2, 1, win_size]
        self.window shape: [1, win_size, 1]
        self.enframe shape: [win_size, 1, win_size]

        :param spec: torch.Tensor, shape: [b, f, t, 2]
        :return:
        """
        spec = torch.view_as_real(spec)
        # spec shape: [b, f, t, 2]
        matrix = torch.concat(tensors=[spec[..., 0], spec[..., 1]], dim=1)
        # matrix shape: [b, f*2, t]

        waveform = F.conv_transpose1d(matrix, self.weight, stride=self.stride)
        # waveform shape: [b, 1, num_samples]

        # this is from torch-stft: https://github.com/pseeth/torch-stft
        t = self.window.repeat(1, 1, matrix.size(-1))**2
        # t shape: [1, win_size, t]
        coff = F.conv_transpose1d(t, self.enframe, stride=self.stride)
        # coff shape: [1, 1, num_samples]
        waveform = waveform / (coff + 1e-8)
        # waveform = waveform / coff
        return waveform

    @torch.no_grad()
    def forward_chunk(self,
                      spec: torch.Tensor,
                      cache_dict: dict = None
                      ):
        """
        :param spec: shape: [b, f, t]
        :param cache_dict: dict,
        waveform_cache shape: [b, 1, win_size - hop_size]
        coff_cache shape: [b, 1, win_size - hop_size]
        :return:
        """
        if cache_dict is None:
            cache_dict = defaultdict(lambda: None)
        waveform_cache = cache_dict["waveform_cache"]
        coff_cache = cache_dict["coff_cache"]

        spec = torch.view_as_real(spec)
        matrix = torch.concat(tensors=[spec[..., 0], spec[..., 1]], dim=1)

        waveform_current = F.conv_transpose1d(matrix, self.weight, stride=self.stride)

        t = self.window.repeat(1, 1, matrix.size(-1))**2
        coff_current = F.conv_transpose1d(t, self.enframe, stride=self.stride)

        overlap_size = self.win_size - self.hop_size

        if waveform_cache is not None:
            waveform_current[:, :, :overlap_size] += waveform_cache
        waveform_output = waveform_current[:, :, :self.hop_size]
        new_waveform_cache = waveform_current[:, :, self.hop_size:]

        if coff_cache is not None:
            coff_current[:, :, :overlap_size] += coff_cache
        coff_output = coff_current[:, :, :self.hop_size]
        new_coff_cache = coff_current[:, :, self.hop_size:]

        waveform_output = waveform_output / (coff_output + 1e-8)

        new_cache_dict = {
            "waveform_cache": new_waveform_cache,
            "coff_cache": new_coff_cache,
        }
        return waveform_output, new_cache_dict


def main():
    nfft = 512
    win_size = 512
    hop_size = 256

    stft = ConvSTFT(nfft=nfft, win_size=win_size, hop_size=hop_size, power=None)
    istft = ConviSTFT(nfft=nfft, win_size=win_size, hop_size=hop_size)

    mixture = torch.rand(size=(1, 16000), dtype=torch.float32)
    b, num_samples = mixture.shape
    t = (num_samples - win_size) / hop_size + 1

    spec = stft.forward(mixture)
    b, f, t = spec.shape

    # 如果 spec 是由 stft 变换得来的,以下两种 waveform 还原方法就是一致的,否则还原出的 waveform 会有差异。
    # spec = spec + 0.01 * torch.randn(size=(1, nfft//2+1, t), dtype=torch.float32)
    print(f"spec.shape: {spec.shape}, spec.dtype: {spec.dtype}")

    waveform = istft.forward(spec)
    # shape: [batch_size, channels, num_samples]
    print(f"waveform.shape: {waveform.shape}, waveform.dtype: {waveform.dtype}")
    print(waveform[:, :, 300: 302])

    waveform = torch.zeros(size=(b, 1, num_samples), dtype=torch.float32)
    for i in range(int(t)):
        begin = i * hop_size
        end = begin + win_size
        sub_spec = spec[:, :, i:i+1]
        sub_waveform = istft.forward(sub_spec)
        # (b, 1, win_size)
        waveform[:, :, begin:end] = sub_waveform
    print(f"waveform.shape: {waveform.shape}, waveform.dtype: {waveform.dtype}")
    print(waveform[:, :, 300: 302])

    return


def main2():
    nfft = 512
    win_size = 512
    hop_size = 256

    stft = ConvSTFT(nfft=nfft, win_size=win_size, hop_size=hop_size, power=None)
    istft = ConviSTFT(nfft=nfft, win_size=win_size, hop_size=hop_size)

    mixture = torch.rand(size=(1, 16128), dtype=torch.float32)
    b, num_samples = mixture.shape

    spec = stft.forward(mixture)
    b, f, t = spec.shape

    # 如果 spec 是由 stft 变换得来的,以下两种 waveform 还原方法就是一致的,否则还原出的 waveform 会有差异。
    spec = spec + 0.01 * torch.randn(size=(1, nfft//2+1, t), dtype=torch.float32)
    print(f"spec.shape: {spec.shape}, spec.dtype: {spec.dtype}")

    waveform = istft.forward(spec)
    # shape: [batch_size, channels, num_samples]
    print(f"waveform.shape: {waveform.shape}, waveform.dtype: {waveform.dtype}")
    print(waveform[:, :, 300: 302])

    cache_dict = None
    waveform = torch.zeros(size=(b, 1, num_samples), dtype=torch.float32)
    for i in range(int(t)):
        sub_spec = spec[:, :, i:i+1]
        begin = i * hop_size

        end = begin + win_size - hop_size
        sub_waveform, cache_dict = istft.forward_chunk(sub_spec, cache_dict=cache_dict)
        # end = begin + win_size
        # sub_waveform = istft.forward(sub_spec)

        waveform[:, :, begin:end] = sub_waveform
    print(f"waveform.shape: {waveform.shape}, waveform.dtype: {waveform.dtype}")
    print(waveform[:, :, 300: 302])

    return


if __name__ == "__main__":
    main2()