HoneyTian's picture
update
f74ae8e
raw
history blame
2.25 kB
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import torch
import torch.nn as nn
import numpy as np
import torch.nn.functional as F
from pesq import pesq
from joblib import Parallel, delayed
from toolbox.torchaudio.models.mpnet.utils import LearnableSigmoid1d
def cal_pesq(clean, noisy, sr=16000):
try:
pesq_score = pesq(sr, clean, noisy, 'wb')
except:
# error can happen due to silent period
pesq_score = -1
return pesq_score
def batch_pesq(clean, noisy):
pesq_score = Parallel(n_jobs=15)(delayed(cal_pesq)(c, n) for c, n in zip(clean, noisy))
pesq_score = np.array(pesq_score)
if -1 in pesq_score:
return None
pesq_score = (pesq_score - 1) / 3.5
return torch.FloatTensor(pesq_score)
def metric_loss(metric_ref, metrics_gen):
loss = 0
for metric_gen in metrics_gen:
metric_loss = F.mse_loss(metric_ref, metric_gen.flatten())
loss += metric_loss
return loss
class MetricDiscriminator(nn.Module):
def __init__(self, dim=16, in_channel=2):
super(MetricDiscriminator, self).__init__()
self.layers = nn.Sequential(
nn.utils.spectral_norm(nn.Conv2d(in_channel, dim, (4,4), (2,2), (1,1), bias=False)),
nn.InstanceNorm2d(dim, affine=True),
nn.PReLU(dim),
nn.utils.spectral_norm(nn.Conv2d(dim, dim*2, (4,4), (2,2), (1,1), bias=False)),
nn.InstanceNorm2d(dim*2, affine=True),
nn.PReLU(dim*2),
nn.utils.spectral_norm(nn.Conv2d(dim*2, dim*4, (4,4), (2,2), (1,1), bias=False)),
nn.InstanceNorm2d(dim*4, affine=True),
nn.PReLU(dim*4),
nn.utils.spectral_norm(nn.Conv2d(dim*4, dim*8, (4,4), (2,2), (1,1), bias=False)),
nn.InstanceNorm2d(dim*8, affine=True),
nn.PReLU(dim*8),
nn.AdaptiveMaxPool2d(1),
nn.Flatten(),
nn.utils.spectral_norm(nn.Linear(dim*8, dim*4)),
nn.Dropout(0.3),
nn.PReLU(dim*4),
nn.utils.spectral_norm(nn.Linear(dim*4, 1)),
LearnableSigmoid1d(1)
)
def forward(self, x, y):
xy = torch.stack((x, y), dim=1)
return self.layers(xy)
if __name__ == '__main__':
pass