nx_denoise / examples /frcrn /step_2_train_model.py
HoneyTian's picture
update
74d0273
#!/usr/bin/python3
# -*- coding: utf-8 -*-
"""
FRCRN 论文中:
在 WSJ0 数据集上训练了 120 个 epoch 得到 pesq 3.62, stoi 98.24, si-snr 21.33
WSJ0 包含约 80小时的纯净英语语音录音.
我的音频大约是 1300 小时, 则预期大约需要 10个 epoch
"""
import argparse
import json
import logging
from logging.handlers import TimedRotatingFileHandler
import os
import platform
from pathlib import Path
import random
import sys
import shutil
from typing import List
pwd = os.path.abspath(os.path.dirname(__file__))
sys.path.append(os.path.join(pwd, "../../"))
import numpy as np
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm
from toolbox.torch.utils.data.dataset.denoise_jsonl_dataset import DenoiseJsonlDataset
from toolbox.torchaudio.losses.snr import NegativeSISNRLoss
from toolbox.torchaudio.metrics.pesq import run_pesq_score
from toolbox.torchaudio.models.frcrn.configuration_frcrn import FRCRNConfig
from toolbox.torchaudio.models.frcrn.modeling_frcrn import FRCRN, FRCRNPretrainedModel
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--train_dataset", default="train.xlsx", type=str)
parser.add_argument("--valid_dataset", default="valid.xlsx", type=str)
parser.add_argument("--num_serialized_models_to_keep", default=15, type=int)
parser.add_argument("--patience", default=10, type=int)
parser.add_argument("--serialization_dir", default="serialization_dir", type=str)
parser.add_argument("--config_file", default="config.yaml", type=str)
args = parser.parse_args()
return args
def logging_config(file_dir: str):
fmt = "%(asctime)s - %(name)s - %(levelname)s %(filename)s:%(lineno)d > %(message)s"
logging.basicConfig(format=fmt,
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO)
file_handler = TimedRotatingFileHandler(
filename=os.path.join(file_dir, "main.log"),
encoding="utf-8",
when="D",
interval=1,
backupCount=7
)
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(logging.Formatter(fmt))
logger = logging.getLogger(__name__)
logger.addHandler(file_handler)
return logger
class CollateFunction(object):
def __init__(self):
pass
def __call__(self, batch: List[dict]):
clean_audios = list()
noisy_audios = list()
for sample in batch:
# noise_wave: torch.Tensor = sample["noise_wave"]
clean_audio: torch.Tensor = sample["speech_wave"]
noisy_audio: torch.Tensor = sample["mix_wave"]
# snr_db: float = sample["snr_db"]
clean_audios.append(clean_audio)
noisy_audios.append(noisy_audio)
clean_audios = torch.stack(clean_audios)
noisy_audios = torch.stack(noisy_audios)
# assert
if torch.any(torch.isnan(clean_audios)) or torch.any(torch.isinf(clean_audios)):
raise AssertionError("nan or inf in clean_audios")
if torch.any(torch.isnan(noisy_audios)) or torch.any(torch.isinf(noisy_audios)):
raise AssertionError("nan or inf in noisy_audios")
return clean_audios, noisy_audios
collate_fn = CollateFunction()
def main():
args = get_args()
config = FRCRNConfig.from_pretrained(
pretrained_model_name_or_path=args.config_file,
)
serialization_dir = Path(args.serialization_dir)
serialization_dir.mkdir(parents=True, exist_ok=True)
logger = logging_config(serialization_dir)
random.seed(config.seed)
np.random.seed(config.seed)
torch.manual_seed(config.seed)
logger.info(f"set seed: {config.seed}")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
n_gpu = torch.cuda.device_count()
logger.info(f"GPU available count: {n_gpu}; device: {device}")
# datasets
train_dataset = DenoiseJsonlDataset(
jsonl_file=args.train_dataset,
expected_sample_rate=config.sample_rate,
max_wave_value=32768.0,
min_snr_db=config.min_snr_db,
max_snr_db=config.max_snr_db,
# skip=225000,
)
valid_dataset = DenoiseJsonlDataset(
jsonl_file=args.valid_dataset,
expected_sample_rate=config.sample_rate,
max_wave_value=32768.0,
min_snr_db=config.min_snr_db,
max_snr_db=config.max_snr_db,
)
train_data_loader = DataLoader(
dataset=train_dataset,
batch_size=config.batch_size,
# shuffle=True,
sampler=None,
# Linux 系统中可以使用多个子进程加载数据, 而在 Windows 系统中不能.
num_workers=0 if platform.system() == "Windows" else os.cpu_count() // 2,
collate_fn=collate_fn,
pin_memory=False,
prefetch_factor=2,
)
valid_data_loader = DataLoader(
dataset=valid_dataset,
batch_size=config.batch_size,
# shuffle=True,
sampler=None,
# Linux 系统中可以使用多个子进程加载数据, 而在 Windows 系统中不能.
num_workers=0 if platform.system() == "Windows" else os.cpu_count() // 2,
collate_fn=collate_fn,
pin_memory=False,
prefetch_factor=2,
)
# models
logger.info(f"prepare models. config_file: {args.config_file}")
model = FRCRNPretrainedModel(config).to(device)
model.to(device)
model.train()
# optimizer
logger.info("prepare optimizer, lr_scheduler, loss_fn, evaluation_metric")
optimizer = torch.optim.AdamW(model.get_params(weight_decay=config.weight_decay), config.lr)
# resume training
last_step_idx = -1
last_epoch = -1
for step_idx_str in serialization_dir.glob("steps-*"):
step_idx_str = Path(step_idx_str)
step_idx = step_idx_str.stem.split("-")[1]
step_idx = int(step_idx)
if step_idx > last_step_idx:
last_step_idx = step_idx
last_epoch = 0
if last_step_idx != -1:
logger.info(f"resume from steps-{last_step_idx}.")
model_pt = serialization_dir / f"steps-{last_step_idx}/model.pt"
optimizer_pth = serialization_dir / f"steps-{last_step_idx}/optimizer.pth"
logger.info(f"load state dict for model.")
with open(model_pt.as_posix(), "rb") as f:
state_dict = torch.load(f, map_location="cpu", weights_only=True)
model.load_state_dict(state_dict, strict=True)
logger.info(f"load state dict for optimizer.")
with open(optimizer_pth.as_posix(), "rb") as f:
state_dict = torch.load(f, map_location="cpu", weights_only=True)
optimizer.load_state_dict(state_dict)
if config.lr_scheduler == "CosineAnnealingLR":
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer,
last_epoch=last_epoch,
# T_max=10 * config.eval_steps,
# eta_min=0.01 * config.lr,
**config.lr_scheduler_kwargs,
)
elif config.lr_scheduler == "MultiStepLR":
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer,
last_epoch=last_epoch,
milestones=[10000, 20000, 30000, 40000, 50000], gamma=0.5
)
else:
raise AssertionError(f"invalid lr_scheduler: {config.lr_scheduler}")
neg_si_snr_loss_fn = NegativeSISNRLoss(reduction="mean").to(device)
# training loop
# state
average_pesq_score = 1000000000
average_loss = 1000000000
average_neg_si_snr_loss = 1000000000
average_mask_loss = 1000000000
model_list = list()
best_epoch_idx = None
best_step_idx = None
best_metric = None
patience_count = 0
step_idx = 0 if last_step_idx == -1 else last_step_idx
logger.info("training")
for epoch_idx in range(max(0, last_epoch+1), config.max_epochs):
# train
model.train()
total_pesq_score = 0.
total_loss = 0.
total_neg_si_snr_loss = 0.
total_mask_loss = 0.
total_batches = 0.
progress_bar_train = tqdm(
initial=step_idx,
desc="Training; epoch-{}".format(epoch_idx),
)
for train_batch in train_data_loader:
clean_audios, noisy_audios = train_batch
clean_audios: torch.Tensor = clean_audios.to(device)
noisy_audios: torch.Tensor = noisy_audios.to(device)
est_spec, est_wav, est_mask = model.forward(noisy_audios)
denoise_audios = est_wav
neg_si_snr_loss = neg_si_snr_loss_fn.forward(denoise_audios, clean_audios)
mask_loss = model.mask_loss_fn(est_mask, clean_audios, noisy_audios)
loss = 1.0 * neg_si_snr_loss + 1.0 * mask_loss
if torch.any(torch.isnan(loss)) or torch.any(torch.isinf(loss)):
logger.info(f"find nan or inf in loss.")
continue
denoise_audios_list_r = list(denoise_audios.detach().cpu().numpy())
clean_audios_list_r = list(clean_audios.detach().cpu().numpy())
pesq_score = run_pesq_score(clean_audios_list_r, denoise_audios_list_r, sample_rate=config.sample_rate, mode="nb")
optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=config.clip_grad_norm)
optimizer.step()
lr_scheduler.step()
total_pesq_score += pesq_score
total_loss += loss.item()
total_neg_si_snr_loss += neg_si_snr_loss.item()
total_mask_loss += mask_loss.item()
total_batches += 1
average_pesq_score = round(total_pesq_score / total_batches, 4)
average_loss = round(total_loss / total_batches, 4)
average_neg_si_snr_loss = round(total_neg_si_snr_loss / total_batches, 4)
average_mask_loss = round(total_mask_loss / total_batches, 4)
progress_bar_train.update(1)
progress_bar_train.set_postfix({
"lr": lr_scheduler.get_last_lr()[0],
"pesq_score": average_pesq_score,
"loss": average_loss,
"neg_si_snr_loss": average_neg_si_snr_loss,
"mask_loss": average_mask_loss,
})
# evaluation
step_idx += 1
if step_idx % config.eval_steps == 0:
with torch.no_grad():
torch.cuda.empty_cache()
total_pesq_score = 0.
total_loss = 0.
total_neg_si_snr_loss = 0.
total_mask_loss = 0.
total_batches = 0.
progress_bar_train.close()
progress_bar_eval = tqdm(
desc="Evaluation; steps-{}k".format(int(step_idx/1000)),
)
for eval_batch in valid_data_loader:
clean_audios, noisy_audios = eval_batch
clean_audios = clean_audios.to(device)
noisy_audios = noisy_audios.to(device)
est_spec, est_wav, est_mask = model.forward(noisy_audios)
denoise_audios = est_wav
neg_si_snr_loss = neg_si_snr_loss_fn.forward(denoise_audios, clean_audios)
mask_loss = model.mask_loss_fn(est_mask, clean_audios, noisy_audios)
loss = 1.0 * neg_si_snr_loss + 1.0 * mask_loss
if torch.any(torch.isnan(loss)) or torch.any(torch.isinf(loss)):
logger.info(f"find nan or inf in loss.")
continue
denoise_audios_list_r = list(denoise_audios.detach().cpu().numpy())
clean_audios_list_r = list(clean_audios.detach().cpu().numpy())
pesq_score = run_pesq_score(clean_audios_list_r, denoise_audios_list_r, sample_rate=config.sample_rate, mode="nb")
total_pesq_score += pesq_score
total_loss += loss.item()
total_neg_si_snr_loss += neg_si_snr_loss.item()
total_mask_loss += mask_loss.item()
total_batches += 1
average_pesq_score = round(total_pesq_score / total_batches, 4)
average_loss = round(total_loss / total_batches, 4)
average_neg_si_snr_loss = round(total_neg_si_snr_loss / total_batches, 4)
average_mask_loss = round(total_mask_loss / total_batches, 4)
progress_bar_eval.update(1)
progress_bar_eval.set_postfix({
"lr": lr_scheduler.get_last_lr()[0],
"pesq_score": average_pesq_score,
"loss": average_loss,
"neg_si_snr_loss": average_neg_si_snr_loss,
"mask_loss": average_mask_loss,
})
total_pesq_score = 0.
total_loss = 0.
total_neg_si_snr_loss = 0.
total_mask_loss = 0.
total_batches = 0.
progress_bar_eval.close()
progress_bar_train = tqdm(
initial=progress_bar_train.n,
postfix=progress_bar_train.postfix,
desc=progress_bar_train.desc,
)
# save path
save_dir = serialization_dir / "steps-{}".format(step_idx)
save_dir.mkdir(parents=True, exist_ok=False)
# save models
model.save_pretrained(save_dir.as_posix())
model_list.append(save_dir)
if len(model_list) >= args.num_serialized_models_to_keep:
model_to_delete: Path = model_list.pop(0)
shutil.rmtree(model_to_delete.as_posix())
# save optim
torch.save(optimizer.state_dict(), (save_dir / "optimizer.pth").as_posix())
# save metric
if best_metric is None:
best_epoch_idx = epoch_idx
best_step_idx = step_idx
best_metric = average_pesq_score
elif average_pesq_score > best_metric:
# great is better.
best_epoch_idx = epoch_idx
best_step_idx = step_idx
best_metric = average_pesq_score
else:
pass
metrics = {
"epoch_idx": epoch_idx,
"best_epoch_idx": best_epoch_idx,
"best_step_idx": best_step_idx,
"pesq_score": average_pesq_score,
"loss": average_loss,
"neg_si_snr_loss": average_neg_si_snr_loss,
"mask_loss": average_mask_loss,
}
metrics_filename = save_dir / "metrics_epoch.json"
with open(metrics_filename, "w", encoding="utf-8") as f:
json.dump(metrics, f, indent=4, ensure_ascii=False)
# save best
best_dir = serialization_dir / "best"
if best_epoch_idx == epoch_idx and best_step_idx == step_idx:
if best_dir.exists():
shutil.rmtree(best_dir)
shutil.copytree(save_dir, best_dir)
# early stop
early_stop_flag = False
if best_epoch_idx == epoch_idx and best_step_idx == step_idx:
patience_count = 0
else:
patience_count += 1
if patience_count >= args.patience:
early_stop_flag = True
# early stop
if early_stop_flag:
break
return
if __name__ == "__main__":
main()