HoneyTian's picture
update
7c562cf
#!/usr/bin/python3
# -*- coding: utf-8 -*-
"""
https://zhuanlan.zhihu.com/p/627039860
"""
import torch
import torch.nn as nn
class NegativeSNRLoss(nn.Module):
"""
Signal-to-Noise Ratio
"""
def __init__(self, eps: float = 1e-8):
super(NegativeSNRLoss, self).__init__()
self.eps = eps
def forward(self, denoise: torch.Tensor, clean: torch.Tensor):
"""
Compute the SI-SNR loss between the estimated signal and the target signal.
:param denoise: The estimated signal (batch_size, signal_length)
:param clean: The target signal (batch_size, signal_length)
:return: The SI-SNR loss (batch_size,)
"""
if denoise.shape != clean.shape:
raise AssertionError("Input signals must have the same shape")
denoise = denoise - torch.mean(denoise, dim=-1, keepdim=True)
clean = clean - torch.mean(clean, dim=-1, keepdim=True)
noise = denoise - clean
clean_power = torch.norm(clean, p=2, dim=-1) ** 2
noise_power = torch.norm(noise, p=2, dim=-1) ** 2
snr = 10 * torch.log10((clean_power + self.eps) / (noise_power + self.eps))
return -snr.mean()
class NegativeSISNRLoss(nn.Module):
"""
Scale-Invariant Source-to-Noise Ratio
https://arxiv.org/abs/2206.07293
"""
def __init__(self,
reduction: str = "mean",
eps: float = 1e-8,
):
super(NegativeSISNRLoss, self).__init__()
self.reduction = reduction
self.eps = eps
def forward(self, denoise: torch.Tensor, clean: torch.Tensor):
"""
Compute the SI-SNR loss between the estimated signal and the target signal.
:param denoise: The estimated signal (batch_size, signal_length)
:param clean: The target signal (batch_size, signal_length)
:return: The SI-SNR loss (batch_size,)
"""
if denoise.shape != clean.shape:
raise AssertionError("Input signals must have the same shape")
denoise = denoise - torch.mean(denoise, dim=-1, keepdim=True)
clean = clean - torch.mean(clean, dim=-1, keepdim=True)
s_target = torch.sum(denoise * clean, dim=-1, keepdim=True) * clean / (torch.norm(clean, p=2, dim=-1, keepdim=True) ** 2 + self.eps)
e_noise = denoise - s_target
batch_si_snr = 10 * torch.log10(torch.norm(s_target, p=2, dim=-1) ** 2 / (torch.norm(e_noise, p=2, dim=-1) ** 2 + self.eps) + self.eps)
# si_snr shape: [batch_size,]
if self.reduction == "mean":
loss = torch.mean(batch_si_snr)
elif self.reduction == "sum":
loss = torch.sum(batch_si_snr)
else:
raise AssertionError
return -loss
def main():
batch_size = 2
signal_length = 16000
estimated_signal = torch.randn(batch_size, signal_length)
# target_signal = torch.randn(batch_size, signal_length)
target_signal = torch.zeros(batch_size, signal_length)
si_snr_loss = NegativeSISNRLoss()
loss = si_snr_loss.forward(estimated_signal, target_signal)
print(f"loss: {loss.item()}")
return
if __name__ == "__main__":
main()