Spaces:
Running
Running
#!/usr/bin/python3 | |
# -*- coding: utf-8 -*- | |
import torch | |
import torch.nn as nn | |
# From torchaudio | |
def _compute_mat_trace(input: torch.Tensor, dim1: int = -2, dim2: int = -1) -> torch.Tensor: | |
r"""Compute the trace of a Tensor along ``dim1`` and ``dim2`` dimensions. | |
Args: | |
input (torch.Tensor): Tensor of dimension `(..., channel, channel)` | |
dim1 (int, optional): the first dimension of the diagonal matrix | |
(Default: -1) | |
dim2 (int, optional): the second dimension of the diagonal matrix | |
(Default: -2) | |
Returns: | |
Tensor: trace of the input Tensor | |
""" | |
assert input.ndim >= 2, "The dimension of the tensor must be at least 2." | |
assert ( | |
input.shape[dim1] == input.shape[dim2] | |
), "The size of ``dim1`` and ``dim2`` must be the same." | |
input = torch.diagonal(input, 0, dim1=dim1, dim2=dim2) | |
return input.sum(dim=-1) | |
def _tik_reg(mat: torch.Tensor, reg: float = 1e-7, eps: float = 1e-8) -> torch.Tensor: | |
"""Perform Tikhonov regularization (only modifying real part). | |
Args: | |
mat (torch.Tensor): input matrix (..., channel, channel) | |
reg (float, optional): regularization factor (Default: 1e-8) | |
eps (float, optional): a value to avoid the correlation matrix is all-zero (Default: ``1e-8``) | |
Returns: | |
Tensor: regularized matrix (..., channel, channel) | |
""" | |
# Add eps | |
C = mat.size(-1) | |
eye = torch.eye(C, dtype=mat.dtype, device=mat.device) | |
epsilon = _compute_mat_trace(mat).real[..., None, None] * reg | |
# in case that correlation_matrix is all-zero | |
epsilon = epsilon + eps | |
mat = mat + epsilon * eye[..., :, :] | |
return mat | |
class MultiFrameModule(nn.Module): | |
""" | |
Multi-frame speech enhancement modules. | |
Signal model and notation: | |
Noisy: `x = s + n` | |
Enhanced: `y = f(x)` | |
Objective: `min ||s - y||` | |
PSD: Power spectral density, notated eg. as `Rxx` for noisy PSD. | |
IFC: Inter-frame correlation vector: PSD*u, u: selection vector. Notated as `rxx` | |
RTF: Relative transfere function, also called steering vector. | |
""" | |
def __init__(self, num_freqs: int, frame_size: int, lookahead: int = 0, real: bool = False): | |
""" | |
Multi-Frame filtering module. | |
:param num_freqs: int. Number of frequency bins used for filtering. | |
:param frame_size: int. Frame size in FD domain. | |
:param lookahead: int. Lookahead, may be used to select the output time step. | |
Note: This module does not add additional padding according to lookahead! | |
:param real: | |
""" | |
super().__init__() | |
self.num_freqs = num_freqs | |
self.frame_size = frame_size | |
self.real = real | |
if real: | |
self.pad = nn.ConstantPad3d((0, 0, 0, 0, frame_size - 1 - lookahead, lookahead), 0.0) | |
else: | |
self.pad = nn.ConstantPad2d((0, 0, frame_size - 1 - lookahead, lookahead), 0.0) | |
self.need_unfold = frame_size > 1 | |
self.lookahead = lookahead | |
def spec_unfold_real(self, spec: torch.Tensor): | |
if self.need_unfold: | |
spec = self.pad(spec).unfold(-3, self.frame_size, 1) | |
return spec.permute(0, 1, 5, 2, 3, 4) | |
# return as_windowed(self.pad(spec), self.frame_size, 1, dim=-3) | |
return spec.unsqueeze(-1) | |
def spec_unfold(self, spec: torch.Tensor): | |
"""Pads and unfolds the spectrogram according to frame_size. | |
Args: | |
spec (complex Tensor): Spectrogram of shape [B, C, T, F] | |
Returns: | |
spec (Tensor): Unfolded spectrogram of shape [B, C, T, F, N], where N: frame_size. | |
""" | |
if self.need_unfold: | |
return self.pad(spec).unfold(2, self.frame_size, 1) | |
return spec.unsqueeze(-1) | |
def solve(Rxx, rss, diag_eps: float = 1e-8, eps: float = 1e-7) -> torch.Tensor: | |
return torch.einsum( | |
"...nm,...m->...n", torch.inverse(_tik_reg(Rxx, diag_eps, eps)), rss | |
) # [T, F, N] | |
def apply_coefs(spec: torch.Tensor, coefs: torch.Tensor) -> torch.Tensor: | |
# spec: [B, C, T, F, N] | |
# coefs: [B, C, T, F, N] | |
return torch.einsum("...n,...n->...", spec, coefs) | |
class DF(MultiFrameModule): | |
"""Deep Filtering.""" | |
def __init__(self, num_freqs: int, frame_size: int, lookahead: int = 0, conj: bool = False): | |
super().__init__(num_freqs, frame_size, lookahead) | |
self.conj: bool = conj | |
def forward(self, spec: torch.Tensor, coefs: torch.Tensor): | |
spec_u = self.spec_unfold(torch.view_as_complex(spec)) | |
coefs = torch.view_as_complex(coefs) | |
spec_f = spec_u.narrow(-2, 0, self.num_freqs) | |
coefs = coefs.view(coefs.shape[0], -1, self.frame_size, *coefs.shape[2:]) | |
if self.conj: | |
coefs = coefs.conj() | |
spec_f = self.df(spec_f, coefs) | |
if self.training: | |
spec = spec.clone() | |
spec[..., : self.num_freqs, :] = torch.view_as_real(spec_f) | |
return spec | |
def df(spec: torch.Tensor, coefs: torch.Tensor) -> torch.Tensor: | |
""" | |
Deep filter implementation using `torch.einsum`. Requires unfolded spectrogram. | |
:param spec: (complex Tensor). Spectrogram of shape [B, C, T, F, N]. | |
:param coefs: (complex Tensor). Coefficients of shape [B, C, N, T, F]. | |
:return: (complex Tensor). Spectrogram of shape [B, C, T, F]. | |
""" | |
return torch.einsum("...tfn,...ntf->...tf", spec, coefs) | |
if __name__ == '__main__': | |
pass | |