Spaces:
Running
Running
#!/usr/bin/python3 | |
# -*- coding: utf-8 -*- | |
from toolbox.torchaudio.configuration_utils import PretrainedConfig | |
class DTLNConfig(PretrainedConfig): | |
def __init__(self, | |
sample_rate: int = 8000, | |
fft_size: int = 200, | |
hop_size: int = 80, | |
win_type: str = "hann", | |
encoder_size: int = 256, | |
min_snr_db: float = -10, | |
max_snr_db: float = 20, | |
lr: float = 0.001, | |
lr_scheduler: str = "CosineAnnealingLR", | |
lr_scheduler_kwargs: dict = None, | |
max_epochs: int = 100, | |
clip_grad_norm: float = 10., | |
seed: int = 1234, | |
num_workers: int = 4, | |
batch_size: int = 4, | |
eval_steps: int = 25000, | |
**kwargs | |
): | |
super(DTLNConfig, self).__init__(**kwargs) | |
# transform | |
self.sample_rate = sample_rate | |
self.fft_size = fft_size | |
self.hop_size = hop_size | |
self.win_type = win_type | |
# model params | |
self.encoder_size = encoder_size | |
# data snr | |
self.min_snr_db = min_snr_db | |
self.max_snr_db = max_snr_db | |
# train | |
self.lr = lr | |
self.lr_scheduler = lr_scheduler | |
self.lr_scheduler_kwargs = lr_scheduler_kwargs or dict() | |
self.max_epochs = max_epochs | |
self.clip_grad_norm = clip_grad_norm | |
self.seed = seed | |
self.num_workers = num_workers | |
self.batch_size = batch_size | |
self.eval_steps = eval_steps | |
def main(): | |
config = DTLNConfig() | |
config.to_yaml_file("config.yaml") | |
return | |
if __name__ == "__main__": | |
main() | |