Spaces:
Running
Running
#!/usr/bin/python3 | |
# -*- coding: utf-8 -*- | |
""" | |
https://github.com/AkenoSyuRi/DTLNPytorch | |
https://github.com/breizhn/DTLN | |
在 dns3 500个小时的数据上训练, 在 dns3 的测试集上达到了 pesq 3.04 的水平。 | |
""" | |
import os | |
from typing import Optional, Union | |
import torch | |
import torch.nn as nn | |
from torch.nn import functional as F | |
from toolbox.torchaudio.configuration_utils import CONFIG_FILE | |
from toolbox.torchaudio.modules.conv_stft import ConvSTFT, ConviSTFT | |
from toolbox.torchaudio.models.dtln.configuration_dtln import DTLNConfig | |
class InstantLayerNormalization(nn.Module): | |
""" | |
Class implementing instant layer normalization. It can also be called | |
channel-wise layer normalization and was proposed by | |
Luo & Mesgarani (https://arxiv.org/abs/1809.07454v2) | |
""" | |
def __init__(self, channels): | |
super(InstantLayerNormalization, self).__init__() | |
self.epsilon = 1e-7 | |
self.gamma = nn.Parameter(torch.ones(1, 1, channels), requires_grad=True) | |
self.beta = nn.Parameter(torch.zeros(1, 1, channels), requires_grad=True) | |
self.register_parameter("gamma", self.gamma) | |
self.register_parameter("beta", self.beta) | |
def forward(self, inputs: torch.Tensor): | |
# calculate mean of each frame | |
mean = torch.mean(inputs, dim=-1, keepdim=True) | |
# calculate variance of each frame | |
variance = torch.mean(torch.square(inputs - mean), dim=-1, keepdim=True) | |
# calculate standard deviation | |
std = torch.sqrt(variance + self.epsilon) | |
outputs = (inputs - mean) / std | |
# scale with gamma | |
outputs = outputs * self.gamma | |
# add the bias beta | |
outputs = outputs + self.beta | |
# return output | |
return outputs | |
class SeperationBlock(nn.Module): | |
def __init__(self, | |
input_size: int = 257, | |
hidden_size: int = 128, | |
dropout: float = 0.25, | |
): | |
super(SeperationBlock, self).__init__() | |
self.rnn1 = nn.LSTM(input_size=input_size, | |
hidden_size=hidden_size, | |
num_layers=1, | |
batch_first=True, | |
dropout=0.0, | |
bidirectional=False, | |
) | |
self.rnn2 = nn.LSTM(input_size=hidden_size, | |
hidden_size=hidden_size, | |
num_layers=1, | |
batch_first=True, | |
dropout=0.0, | |
bidirectional=False, | |
) | |
self.drop = nn.Dropout(dropout) | |
self.dense = nn.Linear(hidden_size, input_size) | |
self.sigmoid = nn.Sigmoid() | |
def forward(self, x: torch.Tensor, in_states: torch.Tensor = None): | |
if in_states is None: | |
hx1 = None | |
hx2 = None | |
else: | |
h1_in, c1_in = in_states[:1, :, :, 0], in_states[:1, :, :, 1] | |
h2_in, c2_in = in_states[1:, :, :, 0], in_states[1:, :, :, 1] | |
hx1 = (h1_in, c1_in) | |
hx2 = (h2_in, c2_in) | |
x1, (h1, c1) = self.rnn1.forward(x, hx=hx1) | |
x1 = self.drop(x1) | |
x2, (h2, c2) = self.rnn2.forward(x1, hx=hx2) | |
x2 = self.drop(x2) | |
mask = self.dense(x2) | |
mask = self.sigmoid(mask) | |
h = torch.cat((h1, h2), dim=0) | |
c = torch.cat((c1, c2), dim=0) | |
out_states = torch.stack((h, c), dim=-1) | |
return mask, out_states | |
MODEL_FILE = "model.pt" | |
class DTLNModel(nn.Module): | |
def __init__(self, | |
fft_size: int = 512, | |
hop_size: int = 128, | |
win_type: str = "hamming", | |
encoder_size: int = 256, | |
): | |
super(DTLNModel, self).__init__() | |
self.fft_size = fft_size | |
self.hop_size = hop_size | |
self.encoder_size = encoder_size | |
self.stft = ConvSTFT( | |
nfft=fft_size, | |
win_size=fft_size, | |
hop_size=hop_size, | |
win_type=win_type, | |
power=None, | |
requires_grad=False | |
) | |
self.istft = ConviSTFT( | |
nfft=fft_size, | |
win_size=fft_size, | |
hop_size=hop_size, | |
win_type=win_type, | |
requires_grad=False | |
) | |
self.sep1 = SeperationBlock(input_size=(fft_size // 2 + 1), | |
hidden_size=128, | |
dropout=0.25, | |
) | |
self.encoder_conv1 = nn.Conv1d(in_channels=fft_size, | |
out_channels=self.encoder_size, | |
kernel_size=1, | |
stride=1, | |
bias=False, | |
) | |
# self.encoder_norm1 = nn.InstanceNorm1d(num_features=self.encoder_size, eps=1e-7, affine=True) | |
self.encoder_norm1 = InstantLayerNormalization(channels=self.encoder_size) | |
self.sep2 = SeperationBlock(input_size=self.encoder_size, | |
hidden_size=128, | |
dropout=0.25, | |
) | |
self.decoder_conv1 = nn.Conv1d(in_channels=self.encoder_size, | |
out_channels=fft_size, | |
kernel_size=1, | |
stride=1, | |
bias=False, | |
) | |
def signal_prepare(self, signal: torch.Tensor) -> torch.Tensor: | |
if signal.dim() == 2: | |
signal = torch.unsqueeze(signal, dim=1) | |
_, _, n_samples = signal.shape | |
remainder = (n_samples - self.fft_size) % self.hop_size | |
if remainder > 0: | |
n_samples_pad = self.hop_size - remainder | |
signal = F.pad(signal, pad=(0, n_samples_pad), mode="constant", value=0) | |
return signal | |
def forward(self, | |
noisy: torch.Tensor, | |
): | |
num_samples = noisy.shape[-1] | |
noisy = self.signal_prepare(noisy) | |
batch_size, _, num_samples_pad = noisy.shape | |
# print(f"num_samples: {num_samples}, num_samples_pad: {num_samples_pad}") | |
denoise_frame, _, _ = self.forward_chunk(noisy) | |
denoise = self.denoise_frame_to_denoise(denoise_frame, batch_size, num_samples_pad) | |
# denoise shape: [b, num_samples_pad] | |
denoise = denoise[:, :num_samples] | |
# denoise shape: [b, num_samples] | |
denoise = torch.unsqueeze(denoise, dim=1) | |
# denoise shape: [b, 1, num_samples] | |
return denoise | |
def forward_chunk(self, | |
noisy: torch.Tensor, | |
in_state1: torch.Tensor = None, | |
in_state2: torch.Tensor = None, | |
): | |
# noisy shape: [b, 1, num_samples] | |
spec = self.stft.forward(noisy) | |
# spec shape: [b, f, t], torch.complex64 | |
# t = (num_samples - win_size) / hop_size + 1 | |
spec = torch.view_as_real(spec) | |
# spec shape: [b, f, t, 2] | |
real = spec[..., 0] | |
imag = spec[..., 1] | |
mag = torch.sqrt(real ** 2 + imag ** 2) | |
phase = torch.atan2(imag, real) | |
# shape: [b, f, t] | |
mag = mag.permute(0, 2, 1) | |
phase = phase.permute(0, 2, 1) | |
# shape: [b, t, f] | |
mask, out_state1 = self.sep1.forward(mag, in_state1) | |
# mask shape: [b, t, f] | |
estimated_mag = mask * mag | |
s1_stft = estimated_mag * torch.exp((1j * phase)) | |
# s1_stft shape: [b, t, f], torch.complex64 | |
y1 = torch.fft.irfft2(s1_stft, dim=-1) | |
# y1 shape: [b, t, fft_size], torch.float32 | |
y1 = y1.permute(0, 2, 1) | |
# y1 shape: [b, fft_size, t] | |
encoded_f = self.encoder_conv1.forward(y1) | |
# shape: [b, c, t] | |
encoded_f = encoded_f.permute(0, 2, 1) | |
# shape: [b, t, c] | |
encoded_f_norm = self.encoder_norm1.forward(encoded_f) | |
# shape: [b, t, c] | |
mask_2, out_state2 = self.sep2.forward(encoded_f_norm, in_state2) | |
# shape: [b, t, c] | |
estimated = mask_2 * encoded_f | |
estimated = estimated.permute(0, 2, 1) | |
# shape: [b, c, t] | |
denoise_frame = self.decoder_conv1.forward(estimated) | |
# shape: [b, fft_size, t] | |
return denoise_frame, out_state1, out_state2 | |
def forward_chunk_by_chunk(self, noisy: torch.Tensor): | |
noisy = self.signal_prepare(noisy) | |
# noisy shape: [b, 1, num_samples] | |
batch_size, _, num_samples_pad = noisy.shape | |
# print(f"num_samples: {num_samples}, num_samples_pad: {num_samples_pad}") | |
t = (num_samples_pad - self.fft_size) // self.hop_size + 1 | |
denoise_list = list() | |
out_state1 = None | |
out_state2 = None | |
overlap_size = self.fft_size - self.hop_size | |
denoise_cache = torch.zeros(size=(batch_size, overlap_size), dtype=noisy.dtype) | |
# denoise_list.append(torch.clone(denoise_cache)) | |
for i in range(t): | |
begin = i * self.hop_size | |
end = begin + self.fft_size | |
sub_noisy = noisy[:, :, begin: end] | |
# noisy shape: [b, 1, frame_size] | |
with torch.no_grad(): | |
sub_denoise_frame, out_state1, out_state2 = self.forward_chunk(sub_noisy, out_state1, out_state2) | |
# sub_denoise_frame shape: [b, fft_size, 1] | |
sub_denoise_frame = sub_denoise_frame[:, :, 0] | |
# sub_denoise_frame shape: [b, fft_size] | |
sub_denoise_frame[:, :overlap_size] += denoise_cache | |
denoise_out = sub_denoise_frame[:, :self.hop_size] | |
denoise_cache = sub_denoise_frame[:, self.hop_size:] | |
# denoise_cache shape: [b, hop_size] | |
denoise_list.append(denoise_out) | |
denoise = torch.concat(denoise_list, dim=-1) | |
# denoise shape: [b, num_samples] | |
denoise = torch.unsqueeze(denoise, dim=1) | |
# denoise shape: [b, 1, num_samples] | |
return denoise | |
def denoise_frame_to_denoise(self, denoise_frame: torch.Tensor, batch_size: int, num_samples: int): | |
# overlap and add | |
# denoise_frame shape: [b, fft_size, t] | |
denoise = torch.nn.functional.fold( | |
denoise_frame, | |
output_size=(num_samples, 1), | |
kernel_size=(self.fft_size, 1), | |
padding=(0, 0), | |
stride=(self.hop_size, 1), | |
) | |
# denoise shape: [b, 1, num_samples, 1] | |
denoise = denoise.reshape(batch_size, -1) | |
# denoise shape: [b, num_samples] | |
return denoise | |
class DTLNPretrainedModel(DTLNModel): | |
def __init__(self, | |
config: DTLNConfig, | |
): | |
super(DTLNPretrainedModel, self).__init__( | |
fft_size=config.fft_size, | |
hop_size=config.hop_size, | |
win_type=config.win_type, | |
encoder_size=config.encoder_size, | |
) | |
self.config = config | |
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): | |
config = DTLNConfig.from_pretrained(pretrained_model_name_or_path, **kwargs) | |
model = cls(config) | |
if os.path.isdir(pretrained_model_name_or_path): | |
ckpt_file = os.path.join(pretrained_model_name_or_path, MODEL_FILE) | |
else: | |
ckpt_file = pretrained_model_name_or_path | |
with open(ckpt_file, "rb") as f: | |
state_dict = torch.load(f, map_location="cpu", weights_only=True) | |
model.load_state_dict(state_dict, strict=True) | |
return model | |
def save_pretrained(self, | |
save_directory: Union[str, os.PathLike], | |
state_dict: Optional[dict] = None, | |
): | |
model = self | |
if state_dict is None: | |
state_dict = model.state_dict() | |
os.makedirs(save_directory, exist_ok=True) | |
# save state dict | |
model_file = os.path.join(save_directory, MODEL_FILE) | |
torch.save(state_dict, model_file) | |
# save config | |
config_file = os.path.join(save_directory, CONFIG_FILE) | |
self.config.to_yaml_file(config_file) | |
return save_directory | |
def main(): | |
config = DTLNConfig() | |
model = DTLNPretrainedModel(config) | |
model.eval() | |
noisy = torch.randn(size=(1, 16000), dtype=torch.float32) | |
with torch.no_grad(): | |
denoise = model.forward(noisy) | |
print(f"denoise.shape: {denoise.shape}") | |
print(denoise[:, :, 300: 302]) | |
print(denoise[:, :, 15680: 15682]) | |
print(denoise[:, :, 15760: 15762]) | |
print(denoise[:, :, 15840: 15842]) | |
denoise = model.forward_chunk_by_chunk(noisy) | |
print(f"denoise.shape: {denoise.shape}") | |
# denoise = denoise[:, :, (config.fft_size - config.hop_size):] | |
print(denoise[:, :, 300: 302]) | |
print(denoise[:, :, 15680: 15682]) | |
print(denoise[:, :, 15760: 15762]) | |
print(denoise[:, :, 15840: 15842]) | |
return | |
if __name__ == "__main__": | |
main() | |