Spaces:
Running
Running
#!/usr/bin/python3 | |
# -*- coding: utf-8 -*- | |
""" | |
https://github.com/haoxiangsnr/IRM-based-Speech-Enhancement-using-LSTM/blob/master/model/lstm_model.py | |
""" | |
import os | |
from typing import Optional, Union, Tuple | |
import torch | |
import torch.nn as nn | |
from torch.nn import functional as F | |
import torchaudio | |
from toolbox.torchaudio.models.lstm.configuration_lstm import LstmConfig | |
from toolbox.torchaudio.configuration_utils import CONFIG_FILE | |
from toolbox.torchaudio.modules.conv_stft import ConvSTFT, ConviSTFT | |
MODEL_FILE = "model.pt" | |
class Transpose(nn.Module): | |
def __init__(self, dim0: int, dim1: int): | |
super(Transpose, self).__init__() | |
self.dim0 = dim0 | |
self.dim1 = dim1 | |
def forward(self, inputs: torch.Tensor): | |
inputs = torch.transpose(inputs, dim0=self.dim0, dim1=self.dim1) | |
return inputs | |
class LstmModel(nn.Module): | |
def __init__(self, | |
nfft: int = 512, | |
win_size: int = 512, | |
hop_size: int = 256, | |
win_type: str = "hann", | |
hidden_size=1024, | |
num_layers: int = 2, | |
batch_first: bool = True, | |
dropout: float = 0.2, | |
): | |
super(LstmModel, self).__init__() | |
self.nfft = nfft | |
self.win_size = win_size | |
self.hop_size = hop_size | |
self.win_type = win_type | |
self.spec_bins = nfft // 2 + 1 | |
self.hidden_size = hidden_size | |
self.eps = 1e-8 | |
self.stft = ConvSTFT( | |
nfft=self.nfft, | |
win_size=self.win_size, | |
hop_size=self.hop_size, | |
win_type=self.win_type, | |
power=None, | |
requires_grad=False | |
) | |
self.istft = ConviSTFT( | |
nfft=self.nfft, | |
win_size=self.win_size, | |
hop_size=self.hop_size, | |
win_type=self.win_type, | |
requires_grad=False | |
) | |
self.lstm = nn.LSTM(input_size=self.spec_bins, | |
hidden_size=hidden_size, | |
num_layers=num_layers, | |
batch_first=batch_first, | |
dropout=dropout, | |
) | |
self.linear = nn.Linear(in_features=hidden_size, out_features=self.spec_bins) | |
self.activation = nn.Sigmoid() | |
def signal_prepare(self, signal: torch.Tensor) -> torch.Tensor: | |
if signal.dim() == 2: | |
signal = torch.unsqueeze(signal, dim=1) | |
_, _, n_samples = signal.shape | |
remainder = (n_samples - self.win_size) % self.hop_size | |
if remainder > 0: | |
n_samples_pad = self.hop_size - remainder | |
signal = F.pad(signal, pad=(0, n_samples_pad), mode="constant", value=0) | |
return signal | |
def forward(self, | |
noisy: torch.Tensor, | |
h_state: Tuple[torch.Tensor, torch.Tensor] = None, | |
): | |
num_samples = noisy.shape[-1] | |
noisy = self.signal_prepare(noisy) | |
batch_size, _, num_samples_pad = noisy.shape | |
# print(f"num_samples: {num_samples}, num_samples_pad: {num_samples_pad}") | |
mag_noisy, pha_noisy = self.mag_pha_stft(noisy) | |
# shape: (b, f, t) | |
# t = (num_samples - win_size) / hop_size + 1 | |
mask, h_state = self.forward_chunk(mag_noisy, h_state) | |
# mask shape: (b, f, t) | |
stft_denoise = self.do_mask(mag_noisy, pha_noisy, mask) | |
denoise = self.istft.forward(stft_denoise) | |
# denoise shape: [b, 1, num_samples_pad] | |
denoise = denoise[:, :, :num_samples] | |
# denoise shape: [b, 1, num_samples] | |
return denoise, mask, h_state | |
def mag_pha_stft(self, noisy: torch.Tensor): | |
# noisy shape: [b, num_samples] | |
stft_noisy = self.stft.forward(noisy) | |
# stft_noisy shape: [b, f, t], torch.complex64 | |
real = torch.real(stft_noisy) | |
imag = torch.imag(stft_noisy) | |
mag_noisy = torch.sqrt(real ** 2 + imag ** 2) | |
pha_noisy = torch.atan2(imag, real) | |
# shape: (b, f, t) | |
return mag_noisy, pha_noisy | |
def forward_chunk(self, | |
mag_noisy: torch.Tensor, | |
h_state: Tuple[torch.Tensor, torch.Tensor] = None, | |
): | |
# mag_noisy shape: (b, f, t) | |
x = torch.transpose(mag_noisy, dim0=2, dim1=1) | |
# x shape: (b, t, f) | |
x, h_state = self.lstm.forward(x, hx=h_state) | |
x = self.linear.forward(x) | |
mask = self.activation(x) | |
# mask shape: (b, t, f) | |
mask = torch.transpose(mask, dim0=2, dim1=1) | |
# mask shape: (b, f, t) | |
return mask, h_state | |
def do_mask(self, | |
mag_noisy: torch.Tensor, | |
pha_noisy: torch.Tensor, | |
mask: torch.Tensor, | |
): | |
# (b, f, t) | |
mag_denoise = mag_noisy * mask | |
stft_denoise = mag_denoise * torch.exp((1j * pha_noisy)) | |
return stft_denoise | |
class LstmPretrainedModel(LstmModel): | |
def __init__(self, | |
config: LstmConfig, | |
): | |
super(LstmPretrainedModel, self).__init__( | |
nfft=config.nfft, | |
win_size=config.win_size, | |
hop_size=config.hop_size, | |
win_type=config.win_type, | |
hidden_size=config.hidden_size, | |
num_layers=config.num_layers, | |
dropout=config.dropout, | |
) | |
self.config = config | |
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): | |
config = LstmConfig.from_pretrained(pretrained_model_name_or_path, **kwargs) | |
model = cls(config) | |
if os.path.isdir(pretrained_model_name_or_path): | |
ckpt_file = os.path.join(pretrained_model_name_or_path, MODEL_FILE) | |
else: | |
ckpt_file = pretrained_model_name_or_path | |
with open(ckpt_file, "rb") as f: | |
state_dict = torch.load(f, map_location="cpu", weights_only=True) | |
model.load_state_dict(state_dict, strict=True) | |
return model | |
def save_pretrained(self, | |
save_directory: Union[str, os.PathLike], | |
state_dict: Optional[dict] = None, | |
): | |
model = self | |
if state_dict is None: | |
state_dict = model.state_dict() | |
os.makedirs(save_directory, exist_ok=True) | |
# save state dict | |
model_file = os.path.join(save_directory, MODEL_FILE) | |
torch.save(state_dict, model_file) | |
# save config | |
config_file = os.path.join(save_directory, CONFIG_FILE) | |
self.config.to_yaml_file(config_file) | |
return save_directory | |
def main(): | |
config = LstmConfig() | |
model = LstmPretrainedModel(config) | |
model.eval() | |
noisy = torch.randn(size=(1, 16000), dtype=torch.float32) | |
noisy = model.signal_prepare(noisy) | |
b, _, num_samples = noisy.shape | |
t = (num_samples - config.win_size) / config.hop_size + 1 | |
waveform, mask, h_state = model.forward(noisy) | |
print(f"waveform.shape: {waveform.shape}, waveform.dtype: {waveform.dtype}") | |
print(waveform[:, :, 300: 302]) | |
# noisy_pad shape: [b, 1, num_samples_pad] | |
h_state = None | |
sub_spec_list = list() | |
for i in range(int(t)): | |
begin = i * config.hop_size | |
end = begin + config.win_size | |
sub_noisy = noisy[:, :, begin:end] | |
mag_noisy, pha_noisy = model.mag_pha_stft(sub_noisy) | |
mask, h_state = model.forward_chunk(mag_noisy, h_state) | |
sub_spec = model.do_mask(mag_noisy, pha_noisy, mask) | |
sub_spec_list.append(sub_spec) | |
spec = torch.concat(sub_spec_list, dim=2) | |
# 1 | |
waveform = model.istft.forward(spec) | |
waveform = waveform[:, :, :num_samples] | |
print(f"waveform.shape: {waveform.shape}, waveform.dtype: {waveform.dtype}") | |
print(waveform[:, :, 300: 302]) | |
# 2 | |
cache_dict = None | |
waveform = torch.zeros(size=(b, 1, num_samples), dtype=torch.float32) | |
for i in range(int(t)): | |
sub_spec = spec[:, :, i:i+1] | |
begin = i * config.hop_size | |
end = begin + config.win_size - config.hop_size | |
sub_waveform, cache_dict = model.istft.forward_chunk(sub_spec, cache_dict=cache_dict) | |
# end = begin + config.win_size | |
# sub_waveform = model.istft.forward(sub_spec) | |
# (b, 1, win_size) | |
waveform[:, :, begin:end] = sub_waveform | |
print(f"waveform.shape: {waveform.shape}, waveform.dtype: {waveform.dtype}") | |
print(waveform[:, :, 300: 302]) | |
return | |
if __name__ == "__main__": | |
main() | |