Spaces:
Running
Running
#!/usr/bin/python3 | |
# -*- coding: utf-8 -*- | |
import math | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
class ErbBandsNumpy(object): | |
def freq2erb(freq_hz: float) -> float: | |
""" | |
https://www.cnblogs.com/LXP-Never/p/16011229.html | |
1 / (24.7 * 9.265) = 0.00436976 | |
""" | |
return 9.265 * math.log(freq_hz / (24.7 * 9.265) + 1) | |
def erb2freq(n_erb: float) -> float: | |
return 24.7 * 9.265 * (math.exp(n_erb / 9.265) - 1) | |
def get_erb_widths(cls, sample_rate: int, nfft: int, erb_bins: int, min_freq_bins_for_erb: int) -> np.ndarray: | |
""" | |
https://github.com/Rikorose/DeepFilterNet/blob/main/libDF/src/lib.rs | |
:param sample_rate: | |
:param nfft: | |
:param erb_bins: erb (Equivalent Rectangular Bandwidth) 等效矩形带宽的通道数. | |
:param min_freq_bins_for_erb: Minimum number of frequency bands per erb band | |
:return: | |
""" | |
nyq_freq = sample_rate / 2. | |
freq_width: float = sample_rate / nfft | |
min_erb: float = cls.freq2erb(0.) | |
max_erb: float = cls.freq2erb(nyq_freq) | |
erb = [0] * erb_bins | |
step = (max_erb - min_erb) / erb_bins | |
prev_freq_bin = 0 | |
freq_over = 0 | |
for i in range(1, erb_bins + 1): | |
f = cls.erb2freq(min_erb + i * step) | |
freq_bin = int(round(f / freq_width)) | |
freq_bins = freq_bin - prev_freq_bin - freq_over | |
if freq_bins < min_freq_bins_for_erb: | |
freq_over = min_freq_bins_for_erb - freq_bins | |
freq_bins = min_freq_bins_for_erb | |
else: | |
freq_over = 0 | |
erb[i - 1] = freq_bins | |
prev_freq_bin = freq_bin | |
erb[erb_bins - 1] += 1 | |
too_large = sum(erb) - (nfft / 2 + 1) | |
if too_large > 0: | |
erb[erb_bins - 1] -= too_large | |
return np.array(erb, dtype=np.uint64) | |
def get_erb_filter_bank(erb_widths: np.ndarray, | |
normalized: bool = True, | |
inverse: bool = False, | |
): | |
num_freq_bins = int(np.sum(erb_widths)) | |
num_erb_bins = len(erb_widths) | |
fb: np.ndarray = np.zeros(shape=(num_freq_bins, num_erb_bins)) | |
points = np.cumsum([0] + erb_widths.tolist()).astype(int)[:-1] | |
for i, (b, w) in enumerate(zip(points.tolist(), erb_widths.tolist())): | |
fb[b: b + w, i] = 1 | |
if inverse: | |
fb = fb.T | |
if not normalized: | |
fb /= np.sum(fb, axis=1, keepdims=True) | |
else: | |
if normalized: | |
fb /= np.sum(fb, axis=0) | |
return fb | |
def spec2erb(spec: np.ndarray, erb_fb: np.ndarray, db: bool = True): | |
""" | |
ERB filterbank and transform to decibel scale. | |
:param spec: Spectrum of shape [B, C, T, F]. | |
:param erb_fb: ERB filterbank array of shape [B] containing the ERB widths, | |
where B are the number of ERB bins. | |
:param db: Whether to transform the output into decibel scale. Defaults to `True`. | |
:return: | |
""" | |
# complex spec to power spec. (real * real + image * image) | |
spec_ = np.abs(spec) ** 2 | |
# spec to erb feature. | |
erb_feat = np.matmul(spec_, erb_fb) | |
if db: | |
erb_feat = 10 * np.log10(erb_feat + 1e-10) | |
erb_feat = np.array(erb_feat, dtype=np.float32) | |
return erb_feat | |
class ErbBands(nn.Module): | |
def __init__(self, | |
sample_rate: int = 8000, | |
nfft: int = 512, | |
erb_bins: int = 32, | |
min_freq_bins_for_erb: int = 2, | |
): | |
super().__init__() | |
self.sample_rate = sample_rate | |
self.nfft = nfft | |
self.erb_bins = erb_bins | |
self.min_freq_bins_for_erb = min_freq_bins_for_erb | |
erb_fb, erb_fb_inv = self.init_erb_fb() | |
erb_fb = torch.tensor(erb_fb, dtype=torch.float32, requires_grad=False) | |
erb_fb_inv = torch.tensor(erb_fb_inv, dtype=torch.float32, requires_grad=False) | |
self.erb_fb = nn.Parameter(erb_fb, requires_grad=False) | |
self.erb_fb_inv = nn.Parameter(erb_fb_inv, requires_grad=False) | |
def init_erb_fb(self): | |
erb_widths = ErbBandsNumpy.get_erb_widths( | |
sample_rate=self.sample_rate, | |
nfft=self.nfft, | |
erb_bins=self.erb_bins, | |
min_freq_bins_for_erb=self.min_freq_bins_for_erb, | |
) | |
erb_fb = ErbBandsNumpy.get_erb_filter_bank( | |
erb_widths=erb_widths, | |
normalized=True, | |
inverse=False, | |
) | |
erb_fb_inv = ErbBandsNumpy.get_erb_filter_bank( | |
erb_widths=erb_widths, | |
normalized=True, | |
inverse=True, | |
) | |
return erb_fb, erb_fb_inv | |
def erb_scale(self, spec: torch.Tensor, db: bool = True): | |
# spec shape: (b, t, f) | |
spec_erb = torch.matmul(spec, self.erb_fb) | |
if db: | |
spec_erb = 10 * torch.log10(spec_erb + 1e-10) | |
return spec_erb | |
def erb_scale_inv(self, spec_erb: torch.Tensor): | |
spec = torch.matmul(spec_erb, self.erb_fb_inv) | |
return spec | |
def main(): | |
erb_bands = ErbBands() | |
spec = torch.randn(size=(2, 199, 257), dtype=torch.float32) | |
spec_erb = erb_bands.erb_scale(spec) | |
print(spec_erb.shape) | |
spec = erb_bands.erb_scale_inv(spec_erb) | |
print(spec.shape) | |
return | |
if __name__ == "__main__": | |
main() | |