Spaces:
Running
Running
update
Browse files
toolbox/torchaudio/models/dfnet2/modeling_dfnet2.py
CHANGED
@@ -135,7 +135,10 @@ class CausalConv2d(nn.Module):
|
|
135 |
return x, new_cache
|
136 |
|
137 |
|
138 |
-
class
|
|
|
|
|
|
|
139 |
def __init__(self,
|
140 |
in_channels: int,
|
141 |
out_channels: int,
|
@@ -148,7 +151,7 @@ class CausalConvTranspose2d(nn.Module):
|
|
148 |
norm_layer: str = "batch_norm_2d",
|
149 |
activation_layer: str = "relu",
|
150 |
):
|
151 |
-
super(
|
152 |
|
153 |
kernel_size = (kernel_size, kernel_size) if isinstance(kernel_size, int) else kernel_size
|
154 |
|
@@ -198,7 +201,7 @@ class CausalConvTranspose2d(nn.Module):
|
|
198 |
else:
|
199 |
self.activation = nn.Identity()
|
200 |
|
201 |
-
def forward(self, inputs: torch.Tensor, cache:
|
202 |
"""
|
203 |
:param inputs: shape: [b, c, t, f]
|
204 |
:param cache: shape: [b, c, lookback, f];
|
@@ -228,6 +231,101 @@ class CausalConvTranspose2d(nn.Module):
|
|
228 |
return x, new_cache
|
229 |
|
230 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
class GroupedLinear(nn.Module):
|
232 |
|
233 |
def __init__(self, input_size: int, hidden_size: int, groups: int = 1):
|
|
|
135 |
return x, new_cache
|
136 |
|
137 |
|
138 |
+
class CausalConvTranspose2dErrorCase(nn.Module):
|
139 |
+
"""
|
140 |
+
错误的缓存方法。
|
141 |
+
"""
|
142 |
def __init__(self,
|
143 |
in_channels: int,
|
144 |
out_channels: int,
|
|
|
151 |
norm_layer: str = "batch_norm_2d",
|
152 |
activation_layer: str = "relu",
|
153 |
):
|
154 |
+
super(CausalConvTranspose2dErrorCase, self).__init__()
|
155 |
|
156 |
kernel_size = (kernel_size, kernel_size) if isinstance(kernel_size, int) else kernel_size
|
157 |
|
|
|
201 |
else:
|
202 |
self.activation = nn.Identity()
|
203 |
|
204 |
+
def forward(self, inputs: torch.Tensor, cache: torch.Tensor = None):
|
205 |
"""
|
206 |
:param inputs: shape: [b, c, t, f]
|
207 |
:param cache: shape: [b, c, lookback, f];
|
|
|
231 |
return x, new_cache
|
232 |
|
233 |
|
234 |
+
class CausalConvTranspose2d(nn.Module):
|
235 |
+
def __init__(self,
|
236 |
+
in_channels: int,
|
237 |
+
out_channels: int,
|
238 |
+
kernel_size: Union[int, Iterable[int]],
|
239 |
+
fstride: int = 1,
|
240 |
+
dilation: int = 1,
|
241 |
+
pad_f_dim: bool = True,
|
242 |
+
bias: bool = True,
|
243 |
+
separable: bool = False,
|
244 |
+
norm_layer: str = "batch_norm_2d",
|
245 |
+
activation_layer: str = "relu",
|
246 |
+
):
|
247 |
+
super(CausalConvTranspose2d, self).__init__()
|
248 |
+
|
249 |
+
kernel_size = (kernel_size, kernel_size) if isinstance(kernel_size, int) else kernel_size
|
250 |
+
|
251 |
+
if pad_f_dim:
|
252 |
+
fpad = kernel_size[1] // 2
|
253 |
+
else:
|
254 |
+
fpad = 0
|
255 |
+
|
256 |
+
# for last 2 dim, pad (left, right, top, bottom).
|
257 |
+
self.lookback = kernel_size[0] - 1
|
258 |
+
if self.lookback > 0:
|
259 |
+
self.tpad = nn.ConstantPad2d(padding=(0, 0, self.lookback, 0), value=0.0)
|
260 |
+
else:
|
261 |
+
self.tpad = nn.Identity()
|
262 |
+
|
263 |
+
groups = math.gcd(in_channels, out_channels) if separable else 1
|
264 |
+
if groups == 1:
|
265 |
+
separable = False
|
266 |
+
|
267 |
+
self.convt = nn.ConvTranspose2d(
|
268 |
+
in_channels,
|
269 |
+
out_channels,
|
270 |
+
kernel_size=kernel_size,
|
271 |
+
padding=(kernel_size[0] - 1, fpad + dilation - 1),
|
272 |
+
output_padding=(0, fpad),
|
273 |
+
stride=(1, fstride), # stride over time is always 1
|
274 |
+
dilation=(1, dilation), # dilation over time is always 1
|
275 |
+
groups=groups,
|
276 |
+
bias=bias,
|
277 |
+
)
|
278 |
+
|
279 |
+
if separable:
|
280 |
+
self.convp = nn.Conv2d(
|
281 |
+
out_channels,
|
282 |
+
out_channels,
|
283 |
+
kernel_size=1,
|
284 |
+
bias=False,
|
285 |
+
)
|
286 |
+
else:
|
287 |
+
self.convp = nn.Identity()
|
288 |
+
|
289 |
+
if norm_layer is not None:
|
290 |
+
norm_layer = norm_layer_dict[norm_layer]
|
291 |
+
self.norm = norm_layer(out_channels)
|
292 |
+
else:
|
293 |
+
self.norm = nn.Identity()
|
294 |
+
|
295 |
+
if activation_layer is not None:
|
296 |
+
activation_layer = activation_layer_dict[activation_layer]
|
297 |
+
self.activation = activation_layer()
|
298 |
+
else:
|
299 |
+
self.activation = nn.Identity()
|
300 |
+
|
301 |
+
def forward(self, inputs: torch.Tensor, cache: torch.Tensor = None):
|
302 |
+
"""
|
303 |
+
:param inputs: shape: [b, c, t, f]
|
304 |
+
:param cache: shape: [b, c, lookback, f];
|
305 |
+
:return:
|
306 |
+
"""
|
307 |
+
x = inputs
|
308 |
+
|
309 |
+
# x shape: [b, c, t, f]
|
310 |
+
x = self.convt(x)
|
311 |
+
# x shape: [b, c, t+lookback, f]
|
312 |
+
|
313 |
+
if cache is None:
|
314 |
+
x = self.tpad(x)
|
315 |
+
else:
|
316 |
+
x = torch.concat(tensors=[cache, x], dim=2)
|
317 |
+
|
318 |
+
new_cache = None
|
319 |
+
if self.lookback > 0:
|
320 |
+
new_cache = x[:, :, -self.lookback:, :]
|
321 |
+
|
322 |
+
x = self.convp(x)
|
323 |
+
x = self.norm(x)
|
324 |
+
x = self.activation(x)
|
325 |
+
|
326 |
+
return x, new_cache
|
327 |
+
|
328 |
+
|
329 |
class GroupedLinear(nn.Module):
|
330 |
|
331 |
def __init__(self, input_size: int, hidden_size: int, groups: int = 1):
|