Spaces:
Running
Running
update
Browse files
examples/rnnoise/yaml/config.yaml
CHANGED
@@ -3,29 +3,33 @@ model_name: "rnnoise"
|
|
3 |
# spec
|
4 |
sample_rate: 8000
|
5 |
segment_size: 32000
|
6 |
-
nfft:
|
7 |
-
win_size:
|
8 |
-
hop_size:
|
9 |
win_type: hann
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
min_snr_db: -10
|
14 |
|
15 |
# model
|
16 |
conv_size: 256
|
17 |
gru_size: 256
|
18 |
|
19 |
-
#
|
20 |
-
|
21 |
-
|
22 |
-
num_workers: 4
|
23 |
-
seed: 1234
|
24 |
|
|
|
25 |
lr: 0.001
|
26 |
-
lr_scheduler: CosineAnnealingLR
|
27 |
-
lr_scheduler_kwargs:
|
|
|
|
|
28 |
|
29 |
-
|
30 |
clip_grad_norm: 10.0
|
31 |
-
|
|
|
|
|
|
|
|
|
|
3 |
# spec
|
4 |
sample_rate: 8000
|
5 |
segment_size: 32000
|
6 |
+
nfft: 160
|
7 |
+
win_size: 160
|
8 |
+
hop_size: 80
|
9 |
win_type: hann
|
10 |
|
11 |
+
erb_bins: 32
|
12 |
+
min_freq_bins_for_erb: 2
|
|
|
13 |
|
14 |
# model
|
15 |
conv_size: 256
|
16 |
gru_size: 256
|
17 |
|
18 |
+
# data
|
19 |
+
max_snr_db: 20
|
20 |
+
min_snr_db: -10
|
|
|
|
|
21 |
|
22 |
+
# train
|
23 |
lr: 0.001
|
24 |
+
lr_scheduler: "CosineAnnealingLR"
|
25 |
+
lr_scheduler_kwargs:
|
26 |
+
T_max: 250000
|
27 |
+
eta_min: 0.0001
|
28 |
|
29 |
+
max_epochs: 100
|
30 |
clip_grad_norm: 10.0
|
31 |
+
seed: 1234
|
32 |
+
|
33 |
+
batch_size: 64
|
34 |
+
num_workers: 4
|
35 |
+
eval_steps: 15000
|
toolbox/torchaudio/models/rnnoise/configuration_rnnoise.py
CHANGED
@@ -21,17 +21,16 @@ class RNNoiseConfig(PretrainedConfig):
|
|
21 |
min_snr_db: float = -10,
|
22 |
max_snr_db: float = 20,
|
23 |
|
24 |
-
max_epochs: int = 100,
|
25 |
-
batch_size: int = 4,
|
26 |
-
num_workers: int = 4,
|
27 |
-
seed: int = 1234,
|
28 |
-
|
29 |
lr: float = 0.001,
|
30 |
lr_scheduler: str = "CosineAnnealingLR",
|
31 |
lr_scheduler_kwargs: dict = None,
|
32 |
|
33 |
-
|
34 |
clip_grad_norm: float = 10.,
|
|
|
|
|
|
|
|
|
35 |
eval_steps: int = 25000,
|
36 |
|
37 |
**kwargs
|
@@ -53,17 +52,16 @@ class RNNoiseConfig(PretrainedConfig):
|
|
53 |
self.min_snr_db = min_snr_db
|
54 |
self.max_snr_db = max_snr_db
|
55 |
|
56 |
-
self.max_epochs = max_epochs
|
57 |
-
self.batch_size = batch_size
|
58 |
-
self.num_workers = num_workers
|
59 |
-
self.seed = seed
|
60 |
-
|
61 |
self.lr = lr
|
62 |
self.lr_scheduler = lr_scheduler
|
63 |
self.lr_scheduler_kwargs = lr_scheduler_kwargs or dict()
|
64 |
|
65 |
-
self.
|
66 |
self.clip_grad_norm = clip_grad_norm
|
|
|
|
|
|
|
|
|
67 |
self.eval_steps = eval_steps
|
68 |
|
69 |
|
|
|
21 |
min_snr_db: float = -10,
|
22 |
max_snr_db: float = 20,
|
23 |
|
|
|
|
|
|
|
|
|
|
|
24 |
lr: float = 0.001,
|
25 |
lr_scheduler: str = "CosineAnnealingLR",
|
26 |
lr_scheduler_kwargs: dict = None,
|
27 |
|
28 |
+
max_epochs: int = 100,
|
29 |
clip_grad_norm: float = 10.,
|
30 |
+
seed: int = 1234,
|
31 |
+
|
32 |
+
batch_size: int = 64,
|
33 |
+
num_workers: int = 4,
|
34 |
eval_steps: int = 25000,
|
35 |
|
36 |
**kwargs
|
|
|
52 |
self.min_snr_db = min_snr_db
|
53 |
self.max_snr_db = max_snr_db
|
54 |
|
|
|
|
|
|
|
|
|
|
|
55 |
self.lr = lr
|
56 |
self.lr_scheduler = lr_scheduler
|
57 |
self.lr_scheduler_kwargs = lr_scheduler_kwargs or dict()
|
58 |
|
59 |
+
self.max_epochs = max_epochs
|
60 |
self.clip_grad_norm = clip_grad_norm
|
61 |
+
self.seed = seed
|
62 |
+
|
63 |
+
self.batch_size = batch_size
|
64 |
+
self.num_workers = num_workers
|
65 |
self.eval_steps = eval_steps
|
66 |
|
67 |
|
toolbox/torchaudio/models/rnnoise/yaml/config.yaml
CHANGED
@@ -3,32 +3,33 @@ model_name: "rnnoise"
|
|
3 |
# spec
|
4 |
sample_rate: 8000
|
5 |
segment_size: 32000
|
6 |
-
nfft:
|
7 |
-
win_size:
|
8 |
-
hop_size:
|
9 |
win_type: hann
|
10 |
|
11 |
erb_bins: 32
|
12 |
min_freq_bins_for_erb: 2
|
13 |
|
14 |
-
# data
|
15 |
-
max_snr_db: 20
|
16 |
-
min_snr_db: -10
|
17 |
-
|
18 |
# model
|
19 |
conv_size: 256
|
20 |
gru_size: 256
|
21 |
|
22 |
-
#
|
23 |
-
|
24 |
-
|
25 |
-
num_workers: 4
|
26 |
-
seed: 1234
|
27 |
|
|
|
28 |
lr: 0.001
|
29 |
-
lr_scheduler: CosineAnnealingLR
|
30 |
-
lr_scheduler_kwargs:
|
|
|
|
|
31 |
|
32 |
-
|
33 |
clip_grad_norm: 10.0
|
34 |
-
|
|
|
|
|
|
|
|
|
|
3 |
# spec
|
4 |
sample_rate: 8000
|
5 |
segment_size: 32000
|
6 |
+
nfft: 160
|
7 |
+
win_size: 160
|
8 |
+
hop_size: 80
|
9 |
win_type: hann
|
10 |
|
11 |
erb_bins: 32
|
12 |
min_freq_bins_for_erb: 2
|
13 |
|
|
|
|
|
|
|
|
|
14 |
# model
|
15 |
conv_size: 256
|
16 |
gru_size: 256
|
17 |
|
18 |
+
# data
|
19 |
+
max_snr_db: 20
|
20 |
+
min_snr_db: -10
|
|
|
|
|
21 |
|
22 |
+
# train
|
23 |
lr: 0.001
|
24 |
+
lr_scheduler: "CosineAnnealingLR"
|
25 |
+
lr_scheduler_kwargs:
|
26 |
+
T_max: 250000
|
27 |
+
eta_min: 0.0001
|
28 |
|
29 |
+
max_epochs: 100
|
30 |
clip_grad_norm: 10.0
|
31 |
+
seed: 1234
|
32 |
+
|
33 |
+
batch_size: 64
|
34 |
+
num_workers: 4
|
35 |
+
eval_steps: 15000
|