Spaces:
Running
Running
update
Browse files
examples/conv_tasnet/step_1_prepare_data.py
CHANGED
@@ -1,22 +1,18 @@
|
|
1 |
#!/usr/bin/python3
|
2 |
# -*- coding: utf-8 -*-
|
3 |
import argparse
|
|
|
4 |
import os
|
5 |
from pathlib import Path
|
6 |
import random
|
7 |
import sys
|
8 |
-
import shutil
|
9 |
|
10 |
pwd = os.path.abspath(os.path.dirname(__file__))
|
11 |
sys.path.append(os.path.join(pwd, "../../"))
|
12 |
|
13 |
-
import pandas as pd
|
14 |
-
from scipy.io import wavfile
|
15 |
from tqdm import tqdm
|
16 |
import librosa
|
17 |
|
18 |
-
from project_settings import project_path
|
19 |
-
|
20 |
|
21 |
def get_args():
|
22 |
parser = argparse.ArgumentParser()
|
@@ -33,8 +29,8 @@ def get_args():
|
|
33 |
type=str
|
34 |
)
|
35 |
|
36 |
-
parser.add_argument("--train_dataset", default="train.
|
37 |
-
parser.add_argument("--valid_dataset", default="valid.
|
38 |
|
39 |
parser.add_argument("--duration", default=2.0, type=float)
|
40 |
parser.add_argument("--min_snr_db", default=-10, type=float)
|
@@ -80,7 +76,9 @@ def target_second_signal_generator(data_dir: str, duration: int = 2, sample_rate
|
|
80 |
yield row
|
81 |
|
82 |
|
83 |
-
def
|
|
|
|
|
84 |
file_dir = Path(args.file_dir)
|
85 |
file_dir.mkdir(exist_ok=True)
|
86 |
|
@@ -104,99 +102,56 @@ def get_dataset(args):
|
|
104 |
|
105 |
count = 0
|
106 |
process_bar = tqdm(desc="build dataset excel")
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
file_dir / "dataset.xlsx",
|
157 |
-
index=False,
|
158 |
-
)
|
159 |
-
return
|
160 |
-
|
161 |
-
|
162 |
-
def split_dataset(args):
|
163 |
-
"""分割训练集, 测试集"""
|
164 |
-
file_dir = Path(args.file_dir)
|
165 |
-
file_dir.mkdir(exist_ok=True)
|
166 |
-
|
167 |
-
df = pd.read_excel(file_dir / "dataset.xlsx")
|
168 |
-
|
169 |
-
train = list()
|
170 |
-
test = list()
|
171 |
-
|
172 |
-
for i, row in df.iterrows():
|
173 |
-
flag = row["flag"]
|
174 |
-
if flag == "TRAIN":
|
175 |
-
train.append(row)
|
176 |
-
else:
|
177 |
-
test.append(row)
|
178 |
-
|
179 |
-
train = pd.DataFrame(train)
|
180 |
-
train.to_excel(
|
181 |
-
args.train_dataset,
|
182 |
-
index=False,
|
183 |
-
# encoding="utf_8_sig"
|
184 |
-
)
|
185 |
-
test = pd.DataFrame(test)
|
186 |
-
test.to_excel(
|
187 |
-
args.valid_dataset,
|
188 |
-
index=False,
|
189 |
-
# encoding="utf_8_sig"
|
190 |
-
)
|
191 |
-
|
192 |
-
return
|
193 |
-
|
194 |
-
|
195 |
-
def main():
|
196 |
-
args = get_args()
|
197 |
|
198 |
-
get_dataset(args)
|
199 |
-
split_dataset(args)
|
200 |
return
|
201 |
|
202 |
|
|
|
1 |
#!/usr/bin/python3
|
2 |
# -*- coding: utf-8 -*-
|
3 |
import argparse
|
4 |
+
import json
|
5 |
import os
|
6 |
from pathlib import Path
|
7 |
import random
|
8 |
import sys
|
|
|
9 |
|
10 |
pwd = os.path.abspath(os.path.dirname(__file__))
|
11 |
sys.path.append(os.path.join(pwd, "../../"))
|
12 |
|
|
|
|
|
13 |
from tqdm import tqdm
|
14 |
import librosa
|
15 |
|
|
|
|
|
16 |
|
17 |
def get_args():
|
18 |
parser = argparse.ArgumentParser()
|
|
|
29 |
type=str
|
30 |
)
|
31 |
|
32 |
+
parser.add_argument("--train_dataset", default="train.jsonl", type=str)
|
33 |
+
parser.add_argument("--valid_dataset", default="valid.jsonl", type=str)
|
34 |
|
35 |
parser.add_argument("--duration", default=2.0, type=float)
|
36 |
parser.add_argument("--min_snr_db", default=-10, type=float)
|
|
|
76 |
yield row
|
77 |
|
78 |
|
79 |
+
def main():
|
80 |
+
args = get_args()
|
81 |
+
|
82 |
file_dir = Path(args.file_dir)
|
83 |
file_dir.mkdir(exist_ok=True)
|
84 |
|
|
|
102 |
|
103 |
count = 0
|
104 |
process_bar = tqdm(desc="build dataset excel")
|
105 |
+
with open(args.train_dataset, "w", encoding="utf-8") as ftrain, open(args.valid_dataset, "w", encoding="utf-8") as fvalid:
|
106 |
+
for noise, speech in zip(noise_generator, speech_generator):
|
107 |
+
if count >= args.max_count:
|
108 |
+
break
|
109 |
+
|
110 |
+
noise_filename = noise["filename"]
|
111 |
+
noise_raw_duration = noise["raw_duration"]
|
112 |
+
noise_offset = noise["offset"]
|
113 |
+
noise_duration = noise["duration"]
|
114 |
+
|
115 |
+
speech_filename = speech["filename"]
|
116 |
+
speech_raw_duration = speech["raw_duration"]
|
117 |
+
speech_offset = speech["offset"]
|
118 |
+
speech_duration = speech["duration"]
|
119 |
+
|
120 |
+
random1 = random.random()
|
121 |
+
random2 = random.random()
|
122 |
+
|
123 |
+
row = {
|
124 |
+
"noise_filename": noise_filename,
|
125 |
+
"noise_raw_duration": noise_raw_duration,
|
126 |
+
"noise_offset": noise_offset,
|
127 |
+
"noise_duration": noise_duration,
|
128 |
+
|
129 |
+
"speech_filename": speech_filename,
|
130 |
+
"speech_raw_duration": speech_raw_duration,
|
131 |
+
"speech_offset": speech_offset,
|
132 |
+
"speech_duration": speech_duration,
|
133 |
+
|
134 |
+
"snr_db": random.uniform(args.min_snr_db, args.max_snr_db),
|
135 |
+
|
136 |
+
"random1": random1,
|
137 |
+
}
|
138 |
+
row = json.dumps(row, ensure_ascii=False)
|
139 |
+
if random2 < 0.8:
|
140 |
+
ftrain.write(f"{row}\n")
|
141 |
+
else:
|
142 |
+
fvalid.write(f"{row}\n")
|
143 |
+
|
144 |
+
count += 1
|
145 |
+
duration_seconds = count * args.duration
|
146 |
+
duration_hours = duration_seconds / 3600
|
147 |
+
|
148 |
+
process_bar.update(n=1)
|
149 |
+
process_bar.set_postfix({
|
150 |
+
# "duration_seconds": round(duration_seconds, 4),
|
151 |
+
"duration_hours": round(duration_hours, 4),
|
152 |
+
|
153 |
+
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
|
|
|
|
155 |
return
|
156 |
|
157 |
|
main.py
CHANGED
@@ -74,6 +74,13 @@ denoise_engines = {
|
|
74 |
project_path / "trained_models/mpnet-nx-speech-20-epoch.zip").as_posix()
|
75 |
}
|
76 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
"mpnet-aishell-1-epoch": {
|
78 |
"infer_cls": InferenceMPNet,
|
79 |
"kwargs": {
|
|
|
74 |
project_path / "trained_models/mpnet-nx-speech-20-epoch.zip").as_posix()
|
75 |
}
|
76 |
},
|
77 |
+
"mpnet-nx-speech-33-epoch-best": {
|
78 |
+
"infer_cls": InferenceMPNet,
|
79 |
+
"kwargs": {
|
80 |
+
"pretrained_model_path_or_zip_file": (
|
81 |
+
project_path / "trained_models/mpnet-nx-speech-33-epoch-best.zip").as_posix()
|
82 |
+
}
|
83 |
+
},
|
84 |
"mpnet-aishell-1-epoch": {
|
85 |
"infer_cls": InferenceMPNet,
|
86 |
"kwargs": {
|
toolbox/torch/utils/data/dataset/denoise_jsonl_dataset.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
|
6 |
+
import librosa
|
7 |
+
import numpy as np
|
8 |
+
import pandas as pd
|
9 |
+
from scipy.io import wavfile
|
10 |
+
import torch
|
11 |
+
import torchaudio
|
12 |
+
from torch.utils.data import Dataset
|
13 |
+
from tqdm import tqdm
|
14 |
+
|
15 |
+
|
16 |
+
class DenoiseJsonlDataset(Dataset):
|
17 |
+
def __init__(self,
|
18 |
+
jsonl_file: str,
|
19 |
+
expected_sample_rate: int,
|
20 |
+
resample: bool = False,
|
21 |
+
max_wave_value: float = 1.0,
|
22 |
+
):
|
23 |
+
self.jsonl_file = jsonl_file
|
24 |
+
self.expected_sample_rate = expected_sample_rate
|
25 |
+
self.resample = resample
|
26 |
+
self.max_wave_value = max_wave_value
|
27 |
+
|
28 |
+
self.samples = self.load_samples(jsonl_file)
|
29 |
+
|
30 |
+
@staticmethod
|
31 |
+
def load_samples(filename: str):
|
32 |
+
samples = list()
|
33 |
+
with open(filename, "r", encoding="utf-8") as f:
|
34 |
+
for row in f:
|
35 |
+
row = json.loads(row)
|
36 |
+
noise_filename = row["noise_filename"]
|
37 |
+
noise_raw_duration = row["noise_raw_duration"]
|
38 |
+
noise_offset = row["noise_offset"]
|
39 |
+
noise_duration = row["noise_duration"]
|
40 |
+
|
41 |
+
speech_filename = row["speech_filename"]
|
42 |
+
speech_raw_duration = row["speech_raw_duration"]
|
43 |
+
speech_offset = row["speech_offset"]
|
44 |
+
speech_duration = row["speech_duration"]
|
45 |
+
|
46 |
+
snr_db = row["snr_db"]
|
47 |
+
|
48 |
+
row = {
|
49 |
+
"noise_filename": noise_filename,
|
50 |
+
"noise_raw_duration": noise_raw_duration,
|
51 |
+
"noise_offset": noise_offset,
|
52 |
+
"noise_duration": noise_duration,
|
53 |
+
|
54 |
+
"speech_filename": speech_filename,
|
55 |
+
"speech_raw_duration": speech_raw_duration,
|
56 |
+
"speech_offset": speech_offset,
|
57 |
+
"speech_duration": speech_duration,
|
58 |
+
|
59 |
+
"snr_db": snr_db,
|
60 |
+
}
|
61 |
+
samples.append(row)
|
62 |
+
return samples
|
63 |
+
|
64 |
+
def __getitem__(self, index):
|
65 |
+
sample = self.samples[index]
|
66 |
+
noise_filename = sample["noise_filename"]
|
67 |
+
noise_offset = sample["noise_offset"]
|
68 |
+
noise_duration = sample["noise_duration"]
|
69 |
+
|
70 |
+
speech_filename = sample["speech_filename"]
|
71 |
+
speech_offset = sample["speech_offset"]
|
72 |
+
speech_duration = sample["speech_duration"]
|
73 |
+
|
74 |
+
snr_db = sample["snr_db"]
|
75 |
+
|
76 |
+
noise_wave = self.filename_to_waveform(noise_filename, noise_offset, noise_duration)
|
77 |
+
speech_wave = self.filename_to_waveform(speech_filename, speech_offset, speech_duration)
|
78 |
+
|
79 |
+
mix_wave, noise_wave_adjusted = self.mix_speech_and_noise(
|
80 |
+
speech=speech_wave.numpy(),
|
81 |
+
noise=noise_wave.numpy(),
|
82 |
+
snr_db=snr_db,
|
83 |
+
)
|
84 |
+
mix_wave = torch.tensor(mix_wave, dtype=torch.float32)
|
85 |
+
noise_wave_adjusted = torch.tensor(noise_wave_adjusted, dtype=torch.float32)
|
86 |
+
|
87 |
+
result = {
|
88 |
+
"noise_wave": noise_wave_adjusted,
|
89 |
+
"speech_wave": speech_wave,
|
90 |
+
"mix_wave": mix_wave,
|
91 |
+
"snr_db": snr_db,
|
92 |
+
}
|
93 |
+
return result
|
94 |
+
|
95 |
+
def __len__(self):
|
96 |
+
return len(self.samples)
|
97 |
+
|
98 |
+
def filename_to_waveform(self, filename: str, offset: float, duration: float):
|
99 |
+
try:
|
100 |
+
waveform, sample_rate = librosa.load(
|
101 |
+
filename,
|
102 |
+
sr=self.expected_sample_rate,
|
103 |
+
offset=offset,
|
104 |
+
duration=duration,
|
105 |
+
)
|
106 |
+
except ValueError as e:
|
107 |
+
print(f"load failed. error type: {type(e)}, error text: {str(e)}, filename: {filename}")
|
108 |
+
raise e
|
109 |
+
waveform = torch.tensor(waveform, dtype=torch.float32)
|
110 |
+
return waveform
|
111 |
+
|
112 |
+
@staticmethod
|
113 |
+
def mix_speech_and_noise(speech: np.ndarray, noise: np.ndarray, snr_db: float):
|
114 |
+
l1 = len(speech)
|
115 |
+
l2 = len(noise)
|
116 |
+
l = min(l1, l2)
|
117 |
+
speech = speech[:l]
|
118 |
+
noise = noise[:l]
|
119 |
+
|
120 |
+
# np.float32, value between (-1, 1).
|
121 |
+
|
122 |
+
speech_power = np.mean(np.square(speech))
|
123 |
+
noise_power = speech_power / (10 ** (snr_db / 10))
|
124 |
+
|
125 |
+
noise_adjusted = np.sqrt(noise_power) * noise / np.sqrt(np.mean(noise ** 2))
|
126 |
+
|
127 |
+
noisy_signal = speech + noise_adjusted
|
128 |
+
|
129 |
+
return noisy_signal, noise_adjusted
|
130 |
+
|
131 |
+
|
132 |
+
if __name__ == '__main__':
|
133 |
+
pass
|