Spaces:
Running
Running
update
Browse files- .gitignore +1 -0
- README.md +4 -1
- examples/frcrn/run.sh +2 -1
- examples/frcrn/yaml/{config.yaml → config-10-512.yaml} +15 -17
- examples/frcrn/yaml/config-14-512.yaml +31 -0
- examples/frcrn/yaml/config-20-512.yaml +31 -0
- main.py +7 -3
- toolbox/torchaudio/models/frcrn/configuration_frcrn.py +21 -23
- toolbox/torchaudio/models/frcrn/yaml/config-10-512.yaml +31 -0
- toolbox/torchaudio/models/frcrn/yaml/config-14-512.yaml +31 -0
- toolbox/torchaudio/models/frcrn/yaml/config-20-512.yaml +31 -0
- toolbox/torchaudio/models/tcnn/modeling_tcnn.py +6 -2
.gitignore
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
|
|
|
2 |
.git/
|
3 |
.idea/
|
4 |
|
|
|
1 |
|
2 |
+
.gradio/
|
3 |
.git/
|
4 |
.idea/
|
5 |
|
README.md
CHANGED
@@ -12,7 +12,7 @@ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-
|
|
12 |
## NX Denoise
|
13 |
|
14 |
|
15 |
-
###
|
16 |
|
17 |
```text
|
18 |
|
@@ -22,5 +22,8 @@ https://openslr.trmal.net/resources/33/
|
|
22 |
AISHELL-3 (19G)
|
23 |
http://www.openslr.org/93/
|
24 |
|
|
|
|
|
|
|
25 |
```
|
26 |
|
|
|
12 |
## NX Denoise
|
13 |
|
14 |
|
15 |
+
### datasets
|
16 |
|
17 |
```text
|
18 |
|
|
|
22 |
AISHELL-3 (19G)
|
23 |
http://www.openslr.org/93/
|
24 |
|
25 |
+
DNS3
|
26 |
+
https://github.com/microsoft/DNS-Challenge/blob/master/download-dns-challenge-3.sh
|
27 |
+
|
28 |
```
|
29 |
|
examples/frcrn/run.sh
CHANGED
@@ -4,7 +4,8 @@
|
|
4 |
|
5 |
|
6 |
sh run.sh --stage 2 --stop_stage 2 --system_version centos --file_folder_name file_dir --final_model_name frcrn \
|
7 |
-
--
|
|
|
8 |
--speech_dir "/data/tianxing/HuggingDatasets/nx_noise/data/speech/dns3-speech"
|
9 |
|
10 |
|
|
|
4 |
|
5 |
|
6 |
sh run.sh --stage 2 --stop_stage 2 --system_version centos --file_folder_name file_dir --final_model_name frcrn \
|
7 |
+
--config_file "yaml/config-20-512.yaml" \
|
8 |
+
--noise_dir "/data/tianxing/HuggingDatasets/nx_noise/data/noise" \
|
9 |
--speech_dir "/data/tianxing/HuggingDatasets/nx_noise/data/speech/dns3-speech"
|
10 |
|
11 |
|
examples/frcrn/yaml/{config.yaml → config-10-512.yaml}
RENAMED
@@ -1,24 +1,10 @@
|
|
1 |
-
|
2 |
model_name: "frcrn"
|
3 |
|
4 |
-
num_gpus: -1
|
5 |
-
|
6 |
-
lr: 0.001
|
7 |
-
lr_scheduler: "CosineAnnealingLR"
|
8 |
-
lr_scheduler_kwargs:
|
9 |
-
T_max: 250000
|
10 |
-
eta_min: 0.0001
|
11 |
-
|
12 |
-
max_epochs: 100
|
13 |
-
weight_decay: 1.0e-05
|
14 |
-
clip_grad_norm: 10.0
|
15 |
-
seed: 1234
|
16 |
-
|
17 |
sample_rate: 8000
|
18 |
segment_size: 32000
|
19 |
-
nfft:
|
20 |
-
win_size:
|
21 |
-
hop_size:
|
22 |
win_type: hann
|
23 |
|
24 |
use_complex_networks: true
|
@@ -31,3 +17,15 @@ max_snr_db: 20
|
|
31 |
num_workers: 8
|
32 |
batch_size: 32
|
33 |
eval_steps: 10000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
model_name: "frcrn"
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
sample_rate: 8000
|
4 |
segment_size: 32000
|
5 |
+
nfft: 512
|
6 |
+
win_size: 512
|
7 |
+
hop_size: 128
|
8 |
win_type: hann
|
9 |
|
10 |
use_complex_networks: true
|
|
|
17 |
num_workers: 8
|
18 |
batch_size: 32
|
19 |
eval_steps: 10000
|
20 |
+
|
21 |
+
lr: 0.001
|
22 |
+
lr_scheduler: "CosineAnnealingLR"
|
23 |
+
lr_scheduler_kwargs:
|
24 |
+
T_max: 250000
|
25 |
+
eta_min: 0.0001
|
26 |
+
|
27 |
+
max_epochs: 100
|
28 |
+
weight_decay: 1.0e-05
|
29 |
+
clip_grad_norm: 10.0
|
30 |
+
seed: 1234
|
31 |
+
num_gpus: -1
|
examples/frcrn/yaml/config-14-512.yaml
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model_name: "frcrn"
|
2 |
+
|
3 |
+
sample_rate: 8000
|
4 |
+
segment_size: 32000
|
5 |
+
nfft: 512
|
6 |
+
win_size: 512
|
7 |
+
hop_size: 128
|
8 |
+
win_type: hann
|
9 |
+
|
10 |
+
use_complex_networks: true
|
11 |
+
model_depth: 14
|
12 |
+
model_complexity: -1
|
13 |
+
|
14 |
+
min_snr_db: -10
|
15 |
+
max_snr_db: 20
|
16 |
+
|
17 |
+
num_workers: 8
|
18 |
+
batch_size: 32
|
19 |
+
eval_steps: 10000
|
20 |
+
|
21 |
+
lr: 0.001
|
22 |
+
lr_scheduler: "CosineAnnealingLR"
|
23 |
+
lr_scheduler_kwargs:
|
24 |
+
T_max: 250000
|
25 |
+
eta_min: 0.0001
|
26 |
+
|
27 |
+
max_epochs: 100
|
28 |
+
weight_decay: 1.0e-05
|
29 |
+
clip_grad_norm: 10.0
|
30 |
+
seed: 1234
|
31 |
+
num_gpus: -1
|
examples/frcrn/yaml/config-20-512.yaml
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model_name: "frcrn"
|
2 |
+
|
3 |
+
sample_rate: 8000
|
4 |
+
segment_size: 32000
|
5 |
+
nfft: 512
|
6 |
+
win_size: 512
|
7 |
+
hop_size: 128
|
8 |
+
win_type: hann
|
9 |
+
|
10 |
+
use_complex_networks: true
|
11 |
+
model_depth: 20
|
12 |
+
model_complexity: 45
|
13 |
+
|
14 |
+
min_snr_db: -10
|
15 |
+
max_snr_db: 20
|
16 |
+
|
17 |
+
num_workers: 8
|
18 |
+
batch_size: 32
|
19 |
+
eval_steps: 10000
|
20 |
+
|
21 |
+
lr: 0.001
|
22 |
+
lr_scheduler: "CosineAnnealingLR"
|
23 |
+
lr_scheduler_kwargs:
|
24 |
+
T_max: 250000
|
25 |
+
eta_min: 0.0001
|
26 |
+
|
27 |
+
max_epochs: 100
|
28 |
+
weight_decay: 1.0e-05
|
29 |
+
clip_grad_norm: 10.0
|
30 |
+
seed: 1234
|
31 |
+
num_gpus: -1
|
main.py
CHANGED
@@ -1,14 +1,16 @@
|
|
1 |
#!/usr/bin/python3
|
2 |
# -*- coding: utf-8 -*-
|
3 |
"""
|
4 |
-
docker build -t denoise:
|
5 |
docker stop denoise_7865 && docker rm denoise_7865
|
6 |
docker run -itd \
|
7 |
--name denoise_7865 \
|
8 |
--restart=always \
|
9 |
--network host \
|
10 |
-
-e
|
11 |
-
|
|
|
|
|
12 |
"""
|
13 |
import argparse
|
14 |
import json
|
@@ -273,7 +275,9 @@ def main():
|
|
273 |
)
|
274 |
|
275 |
# http://127.0.0.1:7865/
|
|
|
276 |
blocks.queue().launch(
|
|
|
277 |
share=False if platform.system() == "Windows" else False,
|
278 |
server_name="127.0.0.1" if platform.system() == "Windows" else "0.0.0.0",
|
279 |
server_port=args.server_port
|
|
|
1 |
#!/usr/bin/python3
|
2 |
# -*- coding: utf-8 -*-
|
3 |
"""
|
4 |
+
docker build -t denoise:v20250609_1919 .
|
5 |
docker stop denoise_7865 && docker rm denoise_7865
|
6 |
docker run -itd \
|
7 |
--name denoise_7865 \
|
8 |
--restart=always \
|
9 |
--network host \
|
10 |
+
-e server_port=7865 \
|
11 |
+
-e hf_token=hf_coRVvzwAzCwGHKRK***********EX \
|
12 |
+
denoise:v20250609_1919 /bin/bash
|
13 |
+
|
14 |
"""
|
15 |
import argparse
|
16 |
import json
|
|
|
275 |
)
|
276 |
|
277 |
# http://127.0.0.1:7865/
|
278 |
+
# http://10.75.27.247:7865/
|
279 |
blocks.queue().launch(
|
280 |
+
# share=True,
|
281 |
share=False if platform.system() == "Windows" else False,
|
282 |
server_name="127.0.0.1" if platform.system() == "Windows" else "0.0.0.0",
|
283 |
server_port=args.server_port
|
toolbox/torchaudio/models/frcrn/configuration_frcrn.py
CHANGED
@@ -10,22 +10,11 @@ from toolbox.torchaudio.configuration_utils import PretrainedConfig
|
|
10 |
|
11 |
class FRCRNConfig(PretrainedConfig):
|
12 |
def __init__(self,
|
13 |
-
num_gpus: int = -1,
|
14 |
-
|
15 |
-
lr: float = 0.001,
|
16 |
-
lr_scheduler: str = "CosineAnnealingLR",
|
17 |
-
lr_scheduler_kwargs: dict = None,
|
18 |
-
|
19 |
-
max_epochs: int = 100,
|
20 |
-
weight_decay: float = 0.00001,
|
21 |
-
clip_grad_norm: float = 10.,
|
22 |
-
seed: int = 1234,
|
23 |
-
|
24 |
sample_rate: int = 8000,
|
25 |
segment_size: int = 32000,
|
26 |
nfft: int = 512,
|
27 |
win_size: int = 512,
|
28 |
-
hop_size: int =
|
29 |
win_type: str = "hann",
|
30 |
|
31 |
use_complex_networks: bool = True,
|
@@ -39,20 +28,19 @@ class FRCRNConfig(PretrainedConfig):
|
|
39 |
batch_size: int = 4,
|
40 |
eval_steps: int = 25000,
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
**kwargs
|
43 |
):
|
44 |
super(FRCRNConfig, self).__init__(**kwargs)
|
45 |
-
self.num_gpus = num_gpus
|
46 |
-
|
47 |
-
self.lr = lr
|
48 |
-
self.lr_scheduler = lr_scheduler
|
49 |
-
self.lr_scheduler_kwargs = lr_scheduler_kwargs or dict()
|
50 |
-
|
51 |
-
self.max_epochs = max_epochs
|
52 |
-
self.weight_decay = weight_decay
|
53 |
-
self.clip_grad_norm = clip_grad_norm
|
54 |
-
self.seed = seed
|
55 |
-
|
56 |
self.sample_rate = sample_rate
|
57 |
self.segment_size = segment_size
|
58 |
self.nfft = nfft
|
@@ -71,6 +59,16 @@ class FRCRNConfig(PretrainedConfig):
|
|
71 |
self.batch_size = batch_size
|
72 |
self.eval_steps = eval_steps
|
73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
def main():
|
76 |
config = FRCRNConfig()
|
|
|
10 |
|
11 |
class FRCRNConfig(PretrainedConfig):
|
12 |
def __init__(self,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
sample_rate: int = 8000,
|
14 |
segment_size: int = 32000,
|
15 |
nfft: int = 512,
|
16 |
win_size: int = 512,
|
17 |
+
hop_size: int = 128,
|
18 |
win_type: str = "hann",
|
19 |
|
20 |
use_complex_networks: bool = True,
|
|
|
28 |
batch_size: int = 4,
|
29 |
eval_steps: int = 25000,
|
30 |
|
31 |
+
lr: float = 0.001,
|
32 |
+
lr_scheduler: str = "CosineAnnealingLR",
|
33 |
+
lr_scheduler_kwargs: dict = None,
|
34 |
+
|
35 |
+
max_epochs: int = 100,
|
36 |
+
weight_decay: float = 0.00001,
|
37 |
+
clip_grad_norm: float = 10.,
|
38 |
+
seed: int = 1234,
|
39 |
+
num_gpus: int = -1,
|
40 |
+
|
41 |
**kwargs
|
42 |
):
|
43 |
super(FRCRNConfig, self).__init__(**kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
self.sample_rate = sample_rate
|
45 |
self.segment_size = segment_size
|
46 |
self.nfft = nfft
|
|
|
59 |
self.batch_size = batch_size
|
60 |
self.eval_steps = eval_steps
|
61 |
|
62 |
+
self.lr = lr
|
63 |
+
self.lr_scheduler = lr_scheduler
|
64 |
+
self.lr_scheduler_kwargs = lr_scheduler_kwargs or dict()
|
65 |
+
|
66 |
+
self.max_epochs = max_epochs
|
67 |
+
self.weight_decay = weight_decay
|
68 |
+
self.clip_grad_norm = clip_grad_norm
|
69 |
+
self.seed = seed
|
70 |
+
self.num_gpus = num_gpus
|
71 |
+
|
72 |
|
73 |
def main():
|
74 |
config = FRCRNConfig()
|
toolbox/torchaudio/models/frcrn/yaml/config-10-512.yaml
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model_name: "frcrn"
|
2 |
+
|
3 |
+
sample_rate: 8000
|
4 |
+
segment_size: 32000
|
5 |
+
nfft: 512
|
6 |
+
win_size: 512
|
7 |
+
hop_size: 128
|
8 |
+
win_type: hann
|
9 |
+
|
10 |
+
use_complex_networks: true
|
11 |
+
model_depth: 10
|
12 |
+
model_complexity: -1
|
13 |
+
|
14 |
+
min_snr_db: -10
|
15 |
+
max_snr_db: 20
|
16 |
+
|
17 |
+
num_workers: 8
|
18 |
+
batch_size: 32
|
19 |
+
eval_steps: 10000
|
20 |
+
|
21 |
+
lr: 0.001
|
22 |
+
lr_scheduler: "CosineAnnealingLR"
|
23 |
+
lr_scheduler_kwargs:
|
24 |
+
T_max: 250000
|
25 |
+
eta_min: 0.0001
|
26 |
+
|
27 |
+
max_epochs: 100
|
28 |
+
weight_decay: 1.0e-05
|
29 |
+
clip_grad_norm: 10.0
|
30 |
+
seed: 1234
|
31 |
+
num_gpus: -1
|
toolbox/torchaudio/models/frcrn/yaml/config-14-512.yaml
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model_name: "frcrn"
|
2 |
+
|
3 |
+
sample_rate: 8000
|
4 |
+
segment_size: 32000
|
5 |
+
nfft: 512
|
6 |
+
win_size: 512
|
7 |
+
hop_size: 128
|
8 |
+
win_type: hann
|
9 |
+
|
10 |
+
use_complex_networks: true
|
11 |
+
model_depth: 14
|
12 |
+
model_complexity: -1
|
13 |
+
|
14 |
+
min_snr_db: -10
|
15 |
+
max_snr_db: 20
|
16 |
+
|
17 |
+
num_workers: 8
|
18 |
+
batch_size: 32
|
19 |
+
eval_steps: 10000
|
20 |
+
|
21 |
+
lr: 0.001
|
22 |
+
lr_scheduler: "CosineAnnealingLR"
|
23 |
+
lr_scheduler_kwargs:
|
24 |
+
T_max: 250000
|
25 |
+
eta_min: 0.0001
|
26 |
+
|
27 |
+
max_epochs: 100
|
28 |
+
weight_decay: 1.0e-05
|
29 |
+
clip_grad_norm: 10.0
|
30 |
+
seed: 1234
|
31 |
+
num_gpus: -1
|
toolbox/torchaudio/models/frcrn/yaml/config-20-512.yaml
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model_name: "frcrn"
|
2 |
+
|
3 |
+
sample_rate: 8000
|
4 |
+
segment_size: 32000
|
5 |
+
nfft: 512
|
6 |
+
win_size: 512
|
7 |
+
hop_size: 128
|
8 |
+
win_type: hann
|
9 |
+
|
10 |
+
use_complex_networks: true
|
11 |
+
model_depth: 20
|
12 |
+
model_complexity: 45
|
13 |
+
|
14 |
+
min_snr_db: -10
|
15 |
+
max_snr_db: 20
|
16 |
+
|
17 |
+
num_workers: 8
|
18 |
+
batch_size: 32
|
19 |
+
eval_steps: 10000
|
20 |
+
|
21 |
+
lr: 0.001
|
22 |
+
lr_scheduler: "CosineAnnealingLR"
|
23 |
+
lr_scheduler_kwargs:
|
24 |
+
T_max: 250000
|
25 |
+
eta_min: 0.0001
|
26 |
+
|
27 |
+
max_epochs: 100
|
28 |
+
weight_decay: 1.0e-05
|
29 |
+
clip_grad_norm: 10.0
|
30 |
+
seed: 1234
|
31 |
+
num_gpus: -1
|
toolbox/torchaudio/models/tcnn/modeling_tcnn.py
CHANGED
@@ -233,12 +233,13 @@ class TCNN(nn.Module):
|
|
233 |
if remainder > 0:
|
234 |
n_samples_pad = self.hop_size - remainder
|
235 |
signal = F.pad(signal, pad=(0, n_samples_pad), mode="constant", value=0)
|
236 |
-
return signal
|
237 |
|
238 |
def forward(self,
|
239 |
noisy: torch.Tensor,
|
240 |
):
|
241 |
-
|
|
|
242 |
batch_size, _, num_samples_pad = noisy.shape
|
243 |
|
244 |
# n_frame = (num_samples_pad - self.win_size) / self.hop_size + 1
|
@@ -268,6 +269,8 @@ class TCNN(nn.Module):
|
|
268 |
|
269 |
denoise = denoise[:, :num_samples]
|
270 |
# denoise shape: [b, num_samples]
|
|
|
|
|
271 |
return denoise
|
272 |
|
273 |
def forward_chunk(self, inputs: torch.Tensor):
|
@@ -332,6 +335,7 @@ class TCNN(nn.Module):
|
|
332 |
|
333 |
def main():
|
334 |
model = TCNN()
|
|
|
335 |
|
336 |
x = torch.randn(64, 1, 5, 320)
|
337 |
# x = torch.randn(64, 1, 5, 160)
|
|
|
233 |
if remainder > 0:
|
234 |
n_samples_pad = self.hop_size - remainder
|
235 |
signal = F.pad(signal, pad=(0, n_samples_pad), mode="constant", value=0)
|
236 |
+
return signal
|
237 |
|
238 |
def forward(self,
|
239 |
noisy: torch.Tensor,
|
240 |
):
|
241 |
+
num_samples = noisy.shape[-1]
|
242 |
+
noisy = self.signal_prepare(noisy)
|
243 |
batch_size, _, num_samples_pad = noisy.shape
|
244 |
|
245 |
# n_frame = (num_samples_pad - self.win_size) / self.hop_size + 1
|
|
|
269 |
|
270 |
denoise = denoise[:, :num_samples]
|
271 |
# denoise shape: [b, num_samples]
|
272 |
+
denoise = torch.unsqueeze(denoise, dim=1)
|
273 |
+
# denoise shape: [b, 1, num_samples]
|
274 |
return denoise
|
275 |
|
276 |
def forward_chunk(self, inputs: torch.Tensor):
|
|
|
335 |
|
336 |
def main():
|
337 |
model = TCNN()
|
338 |
+
model.eval()
|
339 |
|
340 |
x = torch.randn(64, 1, 5, 320)
|
341 |
# x = torch.randn(64, 1, 5, 160)
|