Spaces:
Running
Running
update
Browse files- examples/spectrum_dfnet_aishell/run.sh +178 -0
- examples/spectrum_dfnet_aishell/step_1_prepare_data.py +197 -0
- examples/spectrum_dfnet_aishell/step_2_train_model.py +459 -0
- examples/spectrum_dfnet_aishell/step_3_evaluation.py +270 -0
- examples/spectrum_dfnet_aishell/yaml/config.yaml +38 -0
- toolbox/torchaudio/models/mpnet/__init__.py +6 -0
- toolbox/torchaudio/models/mpnet/modeling_mpnet.py +9 -0
- toolbox/torchaudio/models/spectrum_dfnet/__init__.py +6 -0
- toolbox/torchaudio/models/spectrum_dfnet/configuration_spectrum_dfnet.py +107 -0
- toolbox/torchaudio/models/spectrum_dfnet/modeling_spectrum_dfnet.py +920 -0
examples/spectrum_dfnet_aishell/run.sh
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
: <<'END'
|
4 |
+
|
5 |
+
|
6 |
+
sh run.sh --stage 2 --stop_stage 2 --system_version windows --file_folder_name file_dir \
|
7 |
+
--noise_dir "E:/Users/tianx/HuggingDatasets/nx_noise/data/noise" \
|
8 |
+
--speech_dir "E:/programmer/asr_datasets/aishell/data_aishell/wav/train"
|
9 |
+
|
10 |
+
|
11 |
+
sh run.sh --stage 1 --stop_stage 3 --system_version centos --file_folder_name file_dir \
|
12 |
+
--noise_dir "/data/tianxing/HuggingDatasets/nx_noise/data/noise" \
|
13 |
+
--speech_dir "/data/tianxing/HuggingDatasets/aishell/data_aishell/wav/train"
|
14 |
+
|
15 |
+
sh run.sh --stage 3 --stop_stage 3 --system_version centos --file_folder_name file_dir \
|
16 |
+
--noise_dir "/data/tianxing/HuggingDatasets/nx_noise/data/noise" \
|
17 |
+
--speech_dir "/data/tianxing/HuggingDatasets/aishell/data_aishell/wav/train"
|
18 |
+
|
19 |
+
|
20 |
+
END
|
21 |
+
|
22 |
+
|
23 |
+
# params
|
24 |
+
system_version="windows";
|
25 |
+
verbose=true;
|
26 |
+
stage=0 # start from 0 if you need to start from data preparation
|
27 |
+
stop_stage=9
|
28 |
+
|
29 |
+
work_dir="$(pwd)"
|
30 |
+
file_folder_name=file_folder_name
|
31 |
+
final_model_name=final_model_name
|
32 |
+
config_file="yaml/config.yaml"
|
33 |
+
limit=10
|
34 |
+
|
35 |
+
noise_dir=/data/tianxing/HuggingDatasets/nx_noise/data/noise
|
36 |
+
speech_dir=/data/tianxing/HuggingDatasets/aishell/data_aishell/wav/train
|
37 |
+
|
38 |
+
nohup_name=nohup.out
|
39 |
+
|
40 |
+
# model params
|
41 |
+
batch_size=64
|
42 |
+
max_epochs=200
|
43 |
+
save_top_k=10
|
44 |
+
patience=5
|
45 |
+
|
46 |
+
|
47 |
+
# parse options
|
48 |
+
while true; do
|
49 |
+
[ -z "${1:-}" ] && break; # break if there are no arguments
|
50 |
+
case "$1" in
|
51 |
+
--*) name=$(echo "$1" | sed s/^--// | sed s/-/_/g);
|
52 |
+
eval '[ -z "${'"$name"'+xxx}" ]' && echo "$0: invalid option $1" 1>&2 && exit 1;
|
53 |
+
old_value="(eval echo \\$$name)";
|
54 |
+
if [ "${old_value}" == "true" ] || [ "${old_value}" == "false" ]; then
|
55 |
+
was_bool=true;
|
56 |
+
else
|
57 |
+
was_bool=false;
|
58 |
+
fi
|
59 |
+
|
60 |
+
# Set the variable to the right value-- the escaped quotes make it work if
|
61 |
+
# the option had spaces, like --cmd "queue.pl -sync y"
|
62 |
+
eval "${name}=\"$2\"";
|
63 |
+
|
64 |
+
# Check that Boolean-valued arguments are really Boolean.
|
65 |
+
if $was_bool && [[ "$2" != "true" && "$2" != "false" ]]; then
|
66 |
+
echo "$0: expected \"true\" or \"false\": $1 $2" 1>&2
|
67 |
+
exit 1;
|
68 |
+
fi
|
69 |
+
shift 2;
|
70 |
+
;;
|
71 |
+
|
72 |
+
*) break;
|
73 |
+
esac
|
74 |
+
done
|
75 |
+
|
76 |
+
file_dir="${work_dir}/${file_folder_name}"
|
77 |
+
final_model_dir="${work_dir}/../../trained_models/${final_model_name}";
|
78 |
+
evaluation_audio_dir="${file_dir}/evaluation_audio"
|
79 |
+
|
80 |
+
dataset="${file_dir}/dataset.xlsx"
|
81 |
+
train_dataset="${file_dir}/train.xlsx"
|
82 |
+
valid_dataset="${file_dir}/valid.xlsx"
|
83 |
+
|
84 |
+
$verbose && echo "system_version: ${system_version}"
|
85 |
+
$verbose && echo "file_folder_name: ${file_folder_name}"
|
86 |
+
|
87 |
+
if [ $system_version == "windows" ]; then
|
88 |
+
alias python3='D:/Users/tianx/PycharmProjects/virtualenv/nx_denoise/Scripts/python.exe'
|
89 |
+
elif [ $system_version == "centos" ] || [ $system_version == "ubuntu" ]; then
|
90 |
+
#source /data/local/bin/nx_denoise/bin/activate
|
91 |
+
alias python3='/data/local/bin/nx_denoise/bin/python3'
|
92 |
+
fi
|
93 |
+
|
94 |
+
|
95 |
+
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
|
96 |
+
$verbose && echo "stage 1: prepare data"
|
97 |
+
cd "${work_dir}" || exit 1
|
98 |
+
python3 step_1_prepare_data.py \
|
99 |
+
--file_dir "${file_dir}" \
|
100 |
+
--noise_dir "${noise_dir}" \
|
101 |
+
--speech_dir "${speech_dir}" \
|
102 |
+
--train_dataset "${train_dataset}" \
|
103 |
+
--valid_dataset "${valid_dataset}" \
|
104 |
+
|
105 |
+
fi
|
106 |
+
|
107 |
+
|
108 |
+
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
|
109 |
+
$verbose && echo "stage 2: train model"
|
110 |
+
cd "${work_dir}" || exit 1
|
111 |
+
python3 step_2_train_model.py \
|
112 |
+
--train_dataset "${train_dataset}" \
|
113 |
+
--valid_dataset "${valid_dataset}" \
|
114 |
+
--serialization_dir "${file_dir}" \
|
115 |
+
--config_file "${config_file}" \
|
116 |
+
|
117 |
+
fi
|
118 |
+
|
119 |
+
|
120 |
+
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
|
121 |
+
$verbose && echo "stage 3: test model"
|
122 |
+
cd "${work_dir}" || exit 1
|
123 |
+
python3 step_3_evaluation.py \
|
124 |
+
--valid_dataset "${valid_dataset}" \
|
125 |
+
--model_dir "${file_dir}/best" \
|
126 |
+
--evaluation_audio_dir "${evaluation_audio_dir}" \
|
127 |
+
--limit "${limit}" \
|
128 |
+
|
129 |
+
fi
|
130 |
+
|
131 |
+
|
132 |
+
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
|
133 |
+
$verbose && echo "stage 4: export model"
|
134 |
+
cd "${work_dir}" || exit 1
|
135 |
+
python3 step_5_export_models.py \
|
136 |
+
--vocabulary_dir "${vocabulary_dir}" \
|
137 |
+
--model_dir "${file_dir}/best" \
|
138 |
+
--serialization_dir "${file_dir}" \
|
139 |
+
|
140 |
+
fi
|
141 |
+
|
142 |
+
|
143 |
+
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
|
144 |
+
$verbose && echo "stage 5: collect files"
|
145 |
+
cd "${work_dir}" || exit 1
|
146 |
+
|
147 |
+
mkdir -p ${final_model_dir}
|
148 |
+
|
149 |
+
cp "${file_dir}/best"/* "${final_model_dir}"
|
150 |
+
cp -r "${file_dir}/vocabulary" "${final_model_dir}"
|
151 |
+
|
152 |
+
cp "${file_dir}/evaluation.xlsx" "${final_model_dir}/evaluation.xlsx"
|
153 |
+
|
154 |
+
cp "${file_dir}/trace_model.zip" "${final_model_dir}/trace_model.zip"
|
155 |
+
cp "${file_dir}/trace_quant_model.zip" "${final_model_dir}/trace_quant_model.zip"
|
156 |
+
cp "${file_dir}/script_model.zip" "${final_model_dir}/script_model.zip"
|
157 |
+
cp "${file_dir}/script_quant_model.zip" "${final_model_dir}/script_quant_model.zip"
|
158 |
+
|
159 |
+
cd "${final_model_dir}/.." || exit 1;
|
160 |
+
|
161 |
+
if [ -e "${final_model_name}.zip" ]; then
|
162 |
+
rm -rf "${final_model_name}_backup.zip"
|
163 |
+
mv "${final_model_name}.zip" "${final_model_name}_backup.zip"
|
164 |
+
fi
|
165 |
+
|
166 |
+
zip -r "${final_model_name}.zip" "${final_model_name}"
|
167 |
+
rm -rf "${final_model_name}"
|
168 |
+
|
169 |
+
fi
|
170 |
+
|
171 |
+
|
172 |
+
if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
|
173 |
+
$verbose && echo "stage 6: clear file_dir"
|
174 |
+
cd "${work_dir}" || exit 1
|
175 |
+
|
176 |
+
rm -rf "${file_dir}";
|
177 |
+
|
178 |
+
fi
|
examples/spectrum_dfnet_aishell/step_1_prepare_data.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import argparse
|
4 |
+
import os
|
5 |
+
from pathlib import Path
|
6 |
+
import random
|
7 |
+
import sys
|
8 |
+
import shutil
|
9 |
+
|
10 |
+
pwd = os.path.abspath(os.path.dirname(__file__))
|
11 |
+
sys.path.append(os.path.join(pwd, "../../"))
|
12 |
+
|
13 |
+
import pandas as pd
|
14 |
+
from scipy.io import wavfile
|
15 |
+
from tqdm import tqdm
|
16 |
+
import librosa
|
17 |
+
|
18 |
+
from project_settings import project_path
|
19 |
+
|
20 |
+
|
21 |
+
def get_args():
|
22 |
+
parser = argparse.ArgumentParser()
|
23 |
+
parser.add_argument("--file_dir", default="./", type=str)
|
24 |
+
|
25 |
+
parser.add_argument(
|
26 |
+
"--noise_dir",
|
27 |
+
default=r"E:\Users\tianx\HuggingDatasets\nx_noise\data\noise",
|
28 |
+
type=str
|
29 |
+
)
|
30 |
+
parser.add_argument(
|
31 |
+
"--speech_dir",
|
32 |
+
default=r"E:\programmer\asr_datasets\aishell\data_aishell\wav\train",
|
33 |
+
type=str
|
34 |
+
)
|
35 |
+
|
36 |
+
parser.add_argument("--train_dataset", default="train.xlsx", type=str)
|
37 |
+
parser.add_argument("--valid_dataset", default="valid.xlsx", type=str)
|
38 |
+
|
39 |
+
parser.add_argument("--duration", default=2.0, type=float)
|
40 |
+
parser.add_argument("--min_snr_db", default=-10, type=float)
|
41 |
+
parser.add_argument("--max_snr_db", default=20, type=float)
|
42 |
+
|
43 |
+
parser.add_argument("--target_sample_rate", default=8000, type=int)
|
44 |
+
|
45 |
+
args = parser.parse_args()
|
46 |
+
return args
|
47 |
+
|
48 |
+
|
49 |
+
def filename_generator(data_dir: str):
|
50 |
+
data_dir = Path(data_dir)
|
51 |
+
for filename in data_dir.glob("**/*.wav"):
|
52 |
+
yield filename.as_posix()
|
53 |
+
|
54 |
+
|
55 |
+
def target_second_signal_generator(data_dir: str, duration: int = 2, sample_rate: int = 8000):
|
56 |
+
data_dir = Path(data_dir)
|
57 |
+
for filename in data_dir.glob("**/*.wav"):
|
58 |
+
signal, _ = librosa.load(filename.as_posix(), sr=sample_rate)
|
59 |
+
raw_duration = librosa.get_duration(y=signal, sr=sample_rate)
|
60 |
+
|
61 |
+
if raw_duration < duration:
|
62 |
+
# print(f"duration less than {duration} s. skip filename: {filename.as_posix()}")
|
63 |
+
continue
|
64 |
+
if signal.ndim != 1:
|
65 |
+
raise AssertionError(f"expected ndim 1, instead of {signal.ndim}")
|
66 |
+
|
67 |
+
signal_length = len(signal)
|
68 |
+
win_size = int(duration * sample_rate)
|
69 |
+
for begin in range(0, signal_length - win_size, win_size):
|
70 |
+
row = {
|
71 |
+
"filename": filename.as_posix(),
|
72 |
+
"raw_duration": round(raw_duration, 4),
|
73 |
+
"offset": round(begin / sample_rate, 4),
|
74 |
+
"duration": round(duration, 4),
|
75 |
+
}
|
76 |
+
yield row
|
77 |
+
|
78 |
+
|
79 |
+
def get_dataset(args):
|
80 |
+
file_dir = Path(args.file_dir)
|
81 |
+
file_dir.mkdir(exist_ok=True)
|
82 |
+
|
83 |
+
noise_dir = Path(args.noise_dir)
|
84 |
+
speech_dir = Path(args.speech_dir)
|
85 |
+
|
86 |
+
noise_generator = target_second_signal_generator(
|
87 |
+
noise_dir.as_posix(),
|
88 |
+
duration=args.duration,
|
89 |
+
sample_rate=args.target_sample_rate
|
90 |
+
)
|
91 |
+
speech_generator = target_second_signal_generator(
|
92 |
+
speech_dir.as_posix(),
|
93 |
+
duration=args.duration,
|
94 |
+
sample_rate=args.target_sample_rate
|
95 |
+
)
|
96 |
+
|
97 |
+
dataset = list()
|
98 |
+
|
99 |
+
count = 0
|
100 |
+
process_bar = tqdm(desc="build dataset excel")
|
101 |
+
for noise, speech in zip(noise_generator, speech_generator):
|
102 |
+
|
103 |
+
noise_filename = noise["filename"]
|
104 |
+
noise_raw_duration = noise["raw_duration"]
|
105 |
+
noise_offset = noise["offset"]
|
106 |
+
noise_duration = noise["duration"]
|
107 |
+
|
108 |
+
speech_filename = speech["filename"]
|
109 |
+
speech_raw_duration = speech["raw_duration"]
|
110 |
+
speech_offset = speech["offset"]
|
111 |
+
speech_duration = speech["duration"]
|
112 |
+
|
113 |
+
random1 = random.random()
|
114 |
+
random2 = random.random()
|
115 |
+
|
116 |
+
row = {
|
117 |
+
"noise_filename": noise_filename,
|
118 |
+
"noise_raw_duration": noise_raw_duration,
|
119 |
+
"noise_offset": noise_offset,
|
120 |
+
"noise_duration": noise_duration,
|
121 |
+
|
122 |
+
"speech_filename": speech_filename,
|
123 |
+
"speech_raw_duration": speech_raw_duration,
|
124 |
+
"speech_offset": speech_offset,
|
125 |
+
"speech_duration": speech_duration,
|
126 |
+
|
127 |
+
"snr_db": random.uniform(args.min_snr_db, args.max_snr_db),
|
128 |
+
|
129 |
+
"random1": random1,
|
130 |
+
"random2": random2,
|
131 |
+
"flag": "TRAIN" if random2 < 0.8 else "TEST",
|
132 |
+
}
|
133 |
+
dataset.append(row)
|
134 |
+
count += 1
|
135 |
+
duration_seconds = count * args.duration
|
136 |
+
duration_hours = duration_seconds / 3600
|
137 |
+
|
138 |
+
process_bar.update(n=1)
|
139 |
+
process_bar.set_postfix({
|
140 |
+
# "duration_seconds": round(duration_seconds, 4),
|
141 |
+
"duration_hours": round(duration_hours, 4),
|
142 |
+
|
143 |
+
})
|
144 |
+
|
145 |
+
dataset = pd.DataFrame(dataset)
|
146 |
+
dataset = dataset.sort_values(by=["random1"], ascending=False)
|
147 |
+
dataset.to_excel(
|
148 |
+
file_dir / "dataset.xlsx",
|
149 |
+
index=False,
|
150 |
+
)
|
151 |
+
return
|
152 |
+
|
153 |
+
|
154 |
+
|
155 |
+
def split_dataset(args):
|
156 |
+
"""分割训练集, 测试集"""
|
157 |
+
file_dir = Path(args.file_dir)
|
158 |
+
file_dir.mkdir(exist_ok=True)
|
159 |
+
|
160 |
+
df = pd.read_excel(file_dir / "dataset.xlsx")
|
161 |
+
|
162 |
+
train = list()
|
163 |
+
test = list()
|
164 |
+
|
165 |
+
for i, row in df.iterrows():
|
166 |
+
flag = row["flag"]
|
167 |
+
if flag == "TRAIN":
|
168 |
+
train.append(row)
|
169 |
+
else:
|
170 |
+
test.append(row)
|
171 |
+
|
172 |
+
train = pd.DataFrame(train)
|
173 |
+
train.to_excel(
|
174 |
+
args.train_dataset,
|
175 |
+
index=False,
|
176 |
+
# encoding="utf_8_sig"
|
177 |
+
)
|
178 |
+
test = pd.DataFrame(test)
|
179 |
+
test.to_excel(
|
180 |
+
args.valid_dataset,
|
181 |
+
index=False,
|
182 |
+
# encoding="utf_8_sig"
|
183 |
+
)
|
184 |
+
|
185 |
+
return
|
186 |
+
|
187 |
+
|
188 |
+
def main():
|
189 |
+
args = get_args()
|
190 |
+
|
191 |
+
get_dataset(args)
|
192 |
+
split_dataset(args)
|
193 |
+
return
|
194 |
+
|
195 |
+
|
196 |
+
if __name__ == "__main__":
|
197 |
+
main()
|
examples/spectrum_dfnet_aishell/step_2_train_model.py
ADDED
@@ -0,0 +1,459 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
"""
|
4 |
+
https://github.com/WenzheLiu-Speech/awesome-speech-enhancement
|
5 |
+
"""
|
6 |
+
import argparse
|
7 |
+
import json
|
8 |
+
import logging
|
9 |
+
from logging.handlers import TimedRotatingFileHandler
|
10 |
+
import os
|
11 |
+
import platform
|
12 |
+
from pathlib import Path
|
13 |
+
import random
|
14 |
+
import sys
|
15 |
+
import shutil
|
16 |
+
from typing import List
|
17 |
+
|
18 |
+
pwd = os.path.abspath(os.path.dirname(__file__))
|
19 |
+
sys.path.append(os.path.join(pwd, "../../"))
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
import torch
|
23 |
+
import torch.nn as nn
|
24 |
+
from torch.nn import functional as F
|
25 |
+
from torch.utils.data.dataloader import DataLoader
|
26 |
+
import torchaudio
|
27 |
+
from tqdm import tqdm
|
28 |
+
|
29 |
+
from toolbox.torch.utils.data.dataset.denoise_excel_dataset import DenoiseExcelDataset
|
30 |
+
from toolbox.torchaudio.models.spectrum_dfnet.configuration_spectrum_dfnet import SpectrumDfNetConfig
|
31 |
+
from toolbox.torchaudio.models.spectrum_dfnet.modeling_spectrum_dfnet import SpectrumDfNetPretrainedModel
|
32 |
+
|
33 |
+
|
34 |
+
def get_args():
|
35 |
+
parser = argparse.ArgumentParser()
|
36 |
+
parser.add_argument("--train_dataset", default="train.xlsx", type=str)
|
37 |
+
parser.add_argument("--valid_dataset", default="valid.xlsx", type=str)
|
38 |
+
|
39 |
+
parser.add_argument("--max_epochs", default=100, type=int)
|
40 |
+
|
41 |
+
parser.add_argument("--batch_size", default=64, type=int)
|
42 |
+
parser.add_argument("--learning_rate", default=1e-4, type=float)
|
43 |
+
parser.add_argument("--num_serialized_models_to_keep", default=10, type=int)
|
44 |
+
parser.add_argument("--patience", default=5, type=int)
|
45 |
+
parser.add_argument("--serialization_dir", default="serialization_dir", type=str)
|
46 |
+
parser.add_argument("--seed", default=0, type=int)
|
47 |
+
|
48 |
+
parser.add_argument("--config_file", default="config.yaml", type=str)
|
49 |
+
|
50 |
+
args = parser.parse_args()
|
51 |
+
return args
|
52 |
+
|
53 |
+
|
54 |
+
def logging_config(file_dir: str):
|
55 |
+
fmt = "%(asctime)s - %(name)s - %(levelname)s %(filename)s:%(lineno)d > %(message)s"
|
56 |
+
|
57 |
+
logging.basicConfig(format=fmt,
|
58 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
59 |
+
level=logging.INFO)
|
60 |
+
file_handler = TimedRotatingFileHandler(
|
61 |
+
filename=os.path.join(file_dir, "main.log"),
|
62 |
+
encoding="utf-8",
|
63 |
+
when="D",
|
64 |
+
interval=1,
|
65 |
+
backupCount=7
|
66 |
+
)
|
67 |
+
file_handler.setLevel(logging.INFO)
|
68 |
+
file_handler.setFormatter(logging.Formatter(fmt))
|
69 |
+
logger = logging.getLogger(__name__)
|
70 |
+
logger.addHandler(file_handler)
|
71 |
+
|
72 |
+
return logger
|
73 |
+
|
74 |
+
|
75 |
+
class CollateFunction(object):
|
76 |
+
def __init__(self,
|
77 |
+
n_fft: int = 512,
|
78 |
+
win_length: int = 200,
|
79 |
+
hop_length: int = 80,
|
80 |
+
window_fn: str = "hamming",
|
81 |
+
irm_beta: float = 1.0,
|
82 |
+
epsilon: float = 1e-8,
|
83 |
+
):
|
84 |
+
self.n_fft = n_fft
|
85 |
+
self.win_length = win_length
|
86 |
+
self.hop_length = hop_length
|
87 |
+
self.window_fn = window_fn
|
88 |
+
self.irm_beta = irm_beta
|
89 |
+
self.epsilon = epsilon
|
90 |
+
|
91 |
+
self.complex_transform = torchaudio.transforms.Spectrogram(
|
92 |
+
n_fft=self.n_fft,
|
93 |
+
win_length=self.win_length,
|
94 |
+
hop_length=self.hop_length,
|
95 |
+
power=None,
|
96 |
+
window_fn=torch.hamming_window if window_fn == "hamming" else torch.hann_window,
|
97 |
+
)
|
98 |
+
self.transform = torchaudio.transforms.Spectrogram(
|
99 |
+
n_fft=self.n_fft,
|
100 |
+
win_length=self.win_length,
|
101 |
+
hop_length=self.hop_length,
|
102 |
+
power=2.0,
|
103 |
+
window_fn=torch.hamming_window if window_fn == "hamming" else torch.hann_window,
|
104 |
+
)
|
105 |
+
|
106 |
+
@staticmethod
|
107 |
+
def make_unfold_snr_db(x: torch.Tensor, n_time_steps: int = 3):
|
108 |
+
batch_size, channels, freq_dim, time_steps = x.shape
|
109 |
+
|
110 |
+
# kernel: [freq_dim, n_time_step]
|
111 |
+
kernel_size = (freq_dim, n_time_steps)
|
112 |
+
|
113 |
+
# pad
|
114 |
+
pad = n_time_steps // 2
|
115 |
+
x = torch.concat(tensors=[
|
116 |
+
x[:, :, :, :pad],
|
117 |
+
x,
|
118 |
+
x[:, :, :, -pad:],
|
119 |
+
], dim=-1)
|
120 |
+
|
121 |
+
x = F.unfold(
|
122 |
+
input=x,
|
123 |
+
kernel_size=kernel_size,
|
124 |
+
)
|
125 |
+
# x shape: [batch_size, fold, time_steps]
|
126 |
+
return x
|
127 |
+
|
128 |
+
def __call__(self, batch: List[dict]):
|
129 |
+
speech_complex_spec_list = list()
|
130 |
+
mix_complex_spec_list = list()
|
131 |
+
speech_irm_list = list()
|
132 |
+
snr_db_list = list()
|
133 |
+
for sample in batch:
|
134 |
+
noise_wave: torch.Tensor = sample["noise_wave"]
|
135 |
+
speech_wave: torch.Tensor = sample["speech_wave"]
|
136 |
+
mix_wave: torch.Tensor = sample["mix_wave"]
|
137 |
+
# snr_db: float = sample["snr_db"]
|
138 |
+
|
139 |
+
noise_spec = self.transform.forward(noise_wave)
|
140 |
+
speech_spec = self.transform.forward(speech_wave)
|
141 |
+
|
142 |
+
speech_complex_spec = self.complex_transform.forward(speech_wave)
|
143 |
+
mix_complex_spec = self.complex_transform.forward(mix_wave)
|
144 |
+
|
145 |
+
# noise_irm = noise_spec / (noise_spec + speech_spec)
|
146 |
+
speech_irm = speech_spec / (noise_spec + speech_spec + self.epsilon)
|
147 |
+
speech_irm = torch.pow(speech_irm, self.irm_beta)
|
148 |
+
|
149 |
+
# noise_spec, speech_spec, mix_spec, speech_irm
|
150 |
+
# shape: [freq_dim, time_steps]
|
151 |
+
|
152 |
+
snr_db: torch.Tensor = 10 * torch.log10(
|
153 |
+
speech_spec / (noise_spec + self.epsilon)
|
154 |
+
)
|
155 |
+
snr_db = torch.clamp(snr_db, min=self.epsilon)
|
156 |
+
|
157 |
+
snr_db_ = torch.unsqueeze(snr_db, dim=0)
|
158 |
+
snr_db_ = torch.unsqueeze(snr_db_, dim=0)
|
159 |
+
snr_db_ = self.make_unfold_snr_db(snr_db_, n_time_steps=3)
|
160 |
+
snr_db_ = torch.squeeze(snr_db_, dim=0)
|
161 |
+
# snr_db_ shape: [fold, time_steps]
|
162 |
+
|
163 |
+
snr_db = torch.mean(snr_db_, dim=0, keepdim=True)
|
164 |
+
# snr_db shape: [1, time_steps]
|
165 |
+
|
166 |
+
speech_complex_spec_list.append(speech_complex_spec)
|
167 |
+
mix_complex_spec_list.append(mix_complex_spec)
|
168 |
+
speech_irm_list.append(speech_irm)
|
169 |
+
snr_db_list.append(snr_db)
|
170 |
+
|
171 |
+
speech_complex_spec_list = torch.stack(speech_complex_spec_list)
|
172 |
+
mix_complex_spec_list = torch.stack(mix_complex_spec_list)
|
173 |
+
speech_irm_list = torch.stack(speech_irm_list)
|
174 |
+
snr_db_list = torch.stack(snr_db_list) # shape: (batch_size, time_steps, 1)
|
175 |
+
|
176 |
+
speech_complex_spec_list = speech_complex_spec_list[:, :-1, :]
|
177 |
+
mix_complex_spec_list = mix_complex_spec_list[:, :-1, :]
|
178 |
+
speech_irm_list = speech_irm_list[:, :-1, :]
|
179 |
+
|
180 |
+
# speech_complex_spec_list shape: [batch_size, freq_dim, time_steps]
|
181 |
+
# mix_complex_spec_list shape: [batch_size, freq_dim, time_steps]
|
182 |
+
# speech_irm_list shape: [batch_size, freq_dim, time_steps]
|
183 |
+
# snr_db shape: [batch_size, 1, time_steps]
|
184 |
+
|
185 |
+
# assert
|
186 |
+
if torch.any(torch.isnan(speech_complex_spec_list)) or torch.any(torch.isinf(speech_complex_spec_list)):
|
187 |
+
raise AssertionError("nan or inf in speech_complex_spec_list")
|
188 |
+
if torch.any(torch.isnan(mix_complex_spec_list)) or torch.any(torch.isinf(mix_complex_spec_list)):
|
189 |
+
raise AssertionError("nan or inf in mix_complex_spec_list")
|
190 |
+
if torch.any(torch.isnan(speech_irm_list)) or torch.any(torch.isinf(speech_irm_list)):
|
191 |
+
raise AssertionError("nan or inf in speech_irm_list")
|
192 |
+
if torch.any(torch.isnan(snr_db_list)) or torch.any(torch.isinf(snr_db_list)):
|
193 |
+
raise AssertionError("nan or inf in snr_db_list")
|
194 |
+
|
195 |
+
return speech_complex_spec_list, mix_complex_spec_list, speech_irm_list, snr_db_list
|
196 |
+
|
197 |
+
|
198 |
+
collate_fn = CollateFunction()
|
199 |
+
|
200 |
+
|
201 |
+
def main():
|
202 |
+
args = get_args()
|
203 |
+
|
204 |
+
serialization_dir = Path(args.serialization_dir)
|
205 |
+
serialization_dir.mkdir(parents=True, exist_ok=True)
|
206 |
+
|
207 |
+
logger = logging_config(serialization_dir)
|
208 |
+
|
209 |
+
random.seed(args.seed)
|
210 |
+
np.random.seed(args.seed)
|
211 |
+
torch.manual_seed(args.seed)
|
212 |
+
logger.info("set seed: {}".format(args.seed))
|
213 |
+
|
214 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
215 |
+
n_gpu = torch.cuda.device_count()
|
216 |
+
logger.info("GPU available count: {}; device: {}".format(n_gpu, device))
|
217 |
+
|
218 |
+
# datasets
|
219 |
+
logger.info("prepare datasets")
|
220 |
+
train_dataset = DenoiseExcelDataset(
|
221 |
+
excel_file=args.train_dataset,
|
222 |
+
expected_sample_rate=8000,
|
223 |
+
max_wave_value=32768.0,
|
224 |
+
)
|
225 |
+
valid_dataset = DenoiseExcelDataset(
|
226 |
+
excel_file=args.valid_dataset,
|
227 |
+
expected_sample_rate=8000,
|
228 |
+
max_wave_value=32768.0,
|
229 |
+
)
|
230 |
+
train_data_loader = DataLoader(
|
231 |
+
dataset=train_dataset,
|
232 |
+
batch_size=args.batch_size,
|
233 |
+
shuffle=True,
|
234 |
+
# Linux 系统中可以使用多个子进程加载数据, 而在 Windows 系统中不能.
|
235 |
+
num_workers=0 if platform.system() == "Windows" else os.cpu_count() // 2,
|
236 |
+
collate_fn=collate_fn,
|
237 |
+
pin_memory=False,
|
238 |
+
# prefetch_factor=64,
|
239 |
+
)
|
240 |
+
valid_data_loader = DataLoader(
|
241 |
+
dataset=valid_dataset,
|
242 |
+
batch_size=args.batch_size,
|
243 |
+
shuffle=True,
|
244 |
+
# Linux 系统中可以使用多个子进程加载数据, 而在 Windows 系统中不能.
|
245 |
+
num_workers=0 if platform.system() == "Windows" else os.cpu_count() // 2,
|
246 |
+
collate_fn=collate_fn,
|
247 |
+
pin_memory=False,
|
248 |
+
# prefetch_factor=64,
|
249 |
+
)
|
250 |
+
|
251 |
+
# models
|
252 |
+
logger.info(f"prepare models. config_file: {args.config_file}")
|
253 |
+
config = SpectrumDfNetConfig.from_pretrained(
|
254 |
+
pretrained_model_name_or_path=args.config_file,
|
255 |
+
# num_labels=vocabulary.get_vocab_size(namespace="labels")
|
256 |
+
)
|
257 |
+
model = SpectrumDfNetPretrainedModel(
|
258 |
+
config=config,
|
259 |
+
)
|
260 |
+
model.to(device)
|
261 |
+
model.train()
|
262 |
+
|
263 |
+
# optimizer
|
264 |
+
logger.info("prepare optimizer, lr_scheduler, loss_fn, categorical_accuracy")
|
265 |
+
param_optimizer = model.parameters()
|
266 |
+
optimizer = torch.optim.Adam(
|
267 |
+
param_optimizer,
|
268 |
+
lr=args.learning_rate,
|
269 |
+
)
|
270 |
+
# lr_scheduler = torch.optim.lr_scheduler.StepLR(
|
271 |
+
# optimizer,
|
272 |
+
# step_size=2000
|
273 |
+
# )
|
274 |
+
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
275 |
+
optimizer,
|
276 |
+
milestones=[10000, 20000, 30000, 40000, 50000], gamma=0.5
|
277 |
+
)
|
278 |
+
|
279 |
+
speech_mse_loss = nn.MSELoss(
|
280 |
+
reduction="mean",
|
281 |
+
)
|
282 |
+
irm_mse_loss = nn.MSELoss(
|
283 |
+
reduction="mean",
|
284 |
+
)
|
285 |
+
snr_mse_loss = nn.MSELoss(
|
286 |
+
reduction="mean",
|
287 |
+
)
|
288 |
+
|
289 |
+
# training loop
|
290 |
+
logger.info("training")
|
291 |
+
|
292 |
+
training_loss = 10000000000
|
293 |
+
evaluation_loss = 10000000000
|
294 |
+
|
295 |
+
model_list = list()
|
296 |
+
best_idx_epoch = None
|
297 |
+
best_metric = None
|
298 |
+
patience_count = 0
|
299 |
+
|
300 |
+
for idx_epoch in range(args.max_epochs):
|
301 |
+
total_loss = 0.
|
302 |
+
total_examples = 0.
|
303 |
+
progress_bar = tqdm(
|
304 |
+
total=len(train_data_loader),
|
305 |
+
desc="Training; epoch: {}".format(idx_epoch),
|
306 |
+
)
|
307 |
+
|
308 |
+
for batch in train_data_loader:
|
309 |
+
speech_complex_spec, mix_complex_spec, speech_irm, snr_db = batch
|
310 |
+
speech_complex_spec = speech_complex_spec.to(device)
|
311 |
+
mix_complex_spec = mix_complex_spec.to(device)
|
312 |
+
speech_irm_target = speech_irm.to(device)
|
313 |
+
snr_db_target = snr_db.to(device)
|
314 |
+
|
315 |
+
speech_spec_prediction, speech_irm_prediction, lsnr_prediction = model.forward(mix_complex_spec)
|
316 |
+
if torch.any(torch.isnan(speech_spec_prediction)) or torch.any(torch.isinf(speech_spec_prediction)):
|
317 |
+
raise AssertionError("nan or inf in speech_spec_prediction")
|
318 |
+
if torch.any(torch.isnan(speech_irm_prediction)) or torch.any(torch.isinf(speech_irm_prediction)):
|
319 |
+
raise AssertionError("nan or inf in speech_irm_prediction")
|
320 |
+
if torch.any(torch.isnan(lsnr_prediction)) or torch.any(torch.isinf(lsnr_prediction)):
|
321 |
+
raise AssertionError("nan or inf in lsnr_prediction")
|
322 |
+
|
323 |
+
speech_loss = speech_mse_loss.forward(speech_spec_prediction, speech_complex_spec)
|
324 |
+
irm_loss = irm_mse_loss.forward(speech_irm_prediction, speech_irm_target)
|
325 |
+
|
326 |
+
lsnr_prediction = (lsnr_prediction - config.lsnr_min) / (config.lsnr_max - config.lsnr_min)
|
327 |
+
snr_db_target = (snr_db_target - config.lsnr_min) / (config.lsnr_max - config.lsnr_min)
|
328 |
+
if torch.max(lsnr_prediction) > 1 or torch.min(lsnr_prediction) < 0:
|
329 |
+
raise AssertionError(f"expected lsnr_prediction between 0 and 1.")
|
330 |
+
if torch.max(snr_db_target) > 1 or torch.min(snr_db_target) < 0:
|
331 |
+
raise AssertionError(f"expected snr_db_target between 0 and 1.")
|
332 |
+
|
333 |
+
snr_loss = snr_mse_loss.forward(lsnr_prediction, snr_db_target)
|
334 |
+
|
335 |
+
if torch.any(torch.isnan(snr_loss)) or torch.any(torch.isinf(snr_loss)):
|
336 |
+
raise AssertionError("nan or inf in snr_loss")
|
337 |
+
|
338 |
+
loss = speech_loss + irm_loss + snr_loss
|
339 |
+
|
340 |
+
total_loss += loss.item()
|
341 |
+
total_examples += mix_complex_spec.size(0)
|
342 |
+
|
343 |
+
optimizer.zero_grad()
|
344 |
+
loss.backward()
|
345 |
+
optimizer.step()
|
346 |
+
lr_scheduler.step()
|
347 |
+
|
348 |
+
training_loss = total_loss / total_examples
|
349 |
+
training_loss = round(training_loss, 4)
|
350 |
+
|
351 |
+
progress_bar.update(1)
|
352 |
+
progress_bar.set_postfix({
|
353 |
+
"training_loss": training_loss,
|
354 |
+
})
|
355 |
+
|
356 |
+
total_loss = 0.
|
357 |
+
total_examples = 0.
|
358 |
+
progress_bar = tqdm(
|
359 |
+
total=len(valid_data_loader),
|
360 |
+
desc="Evaluation; epoch: {}".format(idx_epoch),
|
361 |
+
)
|
362 |
+
for batch in valid_data_loader:
|
363 |
+
speech_complex_spec, mix_complex_spec, speech_irm, snr_db = batch
|
364 |
+
speech_complex_spec = speech_complex_spec.to(device)
|
365 |
+
mix_complex_spec = mix_complex_spec.to(device)
|
366 |
+
speech_irm_target = speech_irm.to(device)
|
367 |
+
snr_db_target = snr_db.to(device)
|
368 |
+
|
369 |
+
with torch.no_grad():
|
370 |
+
speech_spec_prediction, speech_irm_prediction, lsnr_prediction = model.forward(mix_complex_spec)
|
371 |
+
if torch.any(torch.isnan(speech_spec_prediction)) or torch.any(torch.isinf(speech_spec_prediction)):
|
372 |
+
raise AssertionError("nan or inf in speech_spec_prediction")
|
373 |
+
if torch.any(torch.isnan(speech_irm_prediction)) or torch.any(torch.isinf(speech_irm_prediction)):
|
374 |
+
raise AssertionError("nan or inf in speech_irm_prediction")
|
375 |
+
if torch.any(torch.isnan(lsnr_prediction)) or torch.any(torch.isinf(lsnr_prediction)):
|
376 |
+
raise AssertionError("nan or inf in lsnr_prediction")
|
377 |
+
|
378 |
+
speech_loss = speech_mse_loss.forward(speech_spec_prediction, speech_complex_spec)
|
379 |
+
irm_loss = irm_mse_loss.forward(speech_irm_prediction, speech_irm_target)
|
380 |
+
|
381 |
+
lsnr_prediction = (lsnr_prediction - config.lsnr_min) / (config.lsnr_max - config.lsnr_min)
|
382 |
+
snr_db_target = (snr_db_target - config.lsnr_min) / (config.lsnr_max - config.lsnr_min)
|
383 |
+
if torch.max(lsnr_prediction) > 1 or torch.min(lsnr_prediction) < 0:
|
384 |
+
raise AssertionError(f"expected lsnr_prediction between 0 and 1.")
|
385 |
+
if torch.max(snr_db_target) > 1 or torch.min(snr_db_target) < 0:
|
386 |
+
raise AssertionError(f"expected snr_db_target between 0 and 1.")
|
387 |
+
|
388 |
+
snr_loss = snr_mse_loss.forward(lsnr_prediction, snr_db_target)
|
389 |
+
|
390 |
+
loss = speech_loss + irm_loss + snr_loss
|
391 |
+
|
392 |
+
total_loss += loss.item()
|
393 |
+
total_examples += mix_complex_spec.size(0)
|
394 |
+
|
395 |
+
evaluation_loss = total_loss / total_examples
|
396 |
+
evaluation_loss = round(evaluation_loss, 4)
|
397 |
+
|
398 |
+
progress_bar.update(1)
|
399 |
+
progress_bar.set_postfix({
|
400 |
+
"evaluation_loss": evaluation_loss,
|
401 |
+
})
|
402 |
+
|
403 |
+
# save path
|
404 |
+
epoch_dir = serialization_dir / "epoch-{}".format(idx_epoch)
|
405 |
+
epoch_dir.mkdir(parents=True, exist_ok=False)
|
406 |
+
|
407 |
+
# save models
|
408 |
+
model.save_pretrained(epoch_dir.as_posix())
|
409 |
+
|
410 |
+
model_list.append(epoch_dir)
|
411 |
+
if len(model_list) >= args.num_serialized_models_to_keep:
|
412 |
+
model_to_delete: Path = model_list.pop(0)
|
413 |
+
shutil.rmtree(model_to_delete.as_posix())
|
414 |
+
|
415 |
+
# save metric
|
416 |
+
if best_metric is None:
|
417 |
+
best_idx_epoch = idx_epoch
|
418 |
+
best_metric = evaluation_loss
|
419 |
+
elif evaluation_loss < best_metric:
|
420 |
+
best_idx_epoch = idx_epoch
|
421 |
+
best_metric = evaluation_loss
|
422 |
+
else:
|
423 |
+
pass
|
424 |
+
|
425 |
+
metrics = {
|
426 |
+
"idx_epoch": idx_epoch,
|
427 |
+
"best_idx_epoch": best_idx_epoch,
|
428 |
+
"training_loss": training_loss,
|
429 |
+
"evaluation_loss": evaluation_loss,
|
430 |
+
"learning_rate": optimizer.param_groups[0]["lr"],
|
431 |
+
}
|
432 |
+
metrics_filename = epoch_dir / "metrics_epoch.json"
|
433 |
+
with open(metrics_filename, "w", encoding="utf-8") as f:
|
434 |
+
json.dump(metrics, f, indent=4, ensure_ascii=False)
|
435 |
+
|
436 |
+
# save best
|
437 |
+
best_dir = serialization_dir / "best"
|
438 |
+
if best_idx_epoch == idx_epoch:
|
439 |
+
if best_dir.exists():
|
440 |
+
shutil.rmtree(best_dir)
|
441 |
+
shutil.copytree(epoch_dir, best_dir)
|
442 |
+
|
443 |
+
# early stop
|
444 |
+
early_stop_flag = False
|
445 |
+
if best_idx_epoch == idx_epoch:
|
446 |
+
patience_count = 0
|
447 |
+
else:
|
448 |
+
patience_count += 1
|
449 |
+
if patience_count >= args.patience:
|
450 |
+
early_stop_flag = True
|
451 |
+
|
452 |
+
# early stop
|
453 |
+
if early_stop_flag:
|
454 |
+
break
|
455 |
+
return
|
456 |
+
|
457 |
+
|
458 |
+
if __name__ == '__main__':
|
459 |
+
main()
|
examples/spectrum_dfnet_aishell/step_3_evaluation.py
ADDED
@@ -0,0 +1,270 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import argparse
|
4 |
+
import logging
|
5 |
+
import os
|
6 |
+
from pathlib import Path
|
7 |
+
import sys
|
8 |
+
import uuid
|
9 |
+
|
10 |
+
pwd = os.path.abspath(os.path.dirname(__file__))
|
11 |
+
sys.path.append(os.path.join(pwd, "../../"))
|
12 |
+
|
13 |
+
import librosa
|
14 |
+
import numpy as np
|
15 |
+
import pandas as pd
|
16 |
+
from scipy.io import wavfile
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
import torchaudio
|
20 |
+
from tqdm import tqdm
|
21 |
+
|
22 |
+
from toolbox.torchaudio.models.spectrum_unet_irm.modeling_spectrum_unet_irm import SpectrumUnetIRMPretrainedModel
|
23 |
+
|
24 |
+
|
25 |
+
def get_args():
|
26 |
+
parser = argparse.ArgumentParser()
|
27 |
+
parser.add_argument("--valid_dataset", default="valid.xlsx", type=str)
|
28 |
+
parser.add_argument("--model_dir", default="serialization_dir/best", type=str)
|
29 |
+
parser.add_argument("--evaluation_audio_dir", default="evaluation_audio_dir", type=str)
|
30 |
+
|
31 |
+
parser.add_argument("--limit", default=10, type=int)
|
32 |
+
|
33 |
+
args = parser.parse_args()
|
34 |
+
return args
|
35 |
+
|
36 |
+
|
37 |
+
def logging_config():
|
38 |
+
fmt = "%(asctime)s - %(name)s - %(levelname)s %(filename)s:%(lineno)d > %(message)s"
|
39 |
+
|
40 |
+
logging.basicConfig(format=fmt,
|
41 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
42 |
+
level=logging.INFO)
|
43 |
+
stream_handler = logging.StreamHandler()
|
44 |
+
stream_handler.setLevel(logging.INFO)
|
45 |
+
stream_handler.setFormatter(logging.Formatter(fmt))
|
46 |
+
|
47 |
+
logger = logging.getLogger(__name__)
|
48 |
+
|
49 |
+
return logger
|
50 |
+
|
51 |
+
|
52 |
+
def mix_speech_and_noise(speech: np.ndarray, noise: np.ndarray, snr_db: float):
|
53 |
+
l1 = len(speech)
|
54 |
+
l2 = len(noise)
|
55 |
+
l = min(l1, l2)
|
56 |
+
speech = speech[:l]
|
57 |
+
noise = noise[:l]
|
58 |
+
|
59 |
+
# np.float32, value between (-1, 1).
|
60 |
+
|
61 |
+
speech_power = np.mean(np.square(speech))
|
62 |
+
noise_power = speech_power / (10 ** (snr_db / 10))
|
63 |
+
|
64 |
+
noise_adjusted = np.sqrt(noise_power) * noise / np.sqrt(np.mean(noise ** 2))
|
65 |
+
|
66 |
+
noisy_signal = speech + noise_adjusted
|
67 |
+
|
68 |
+
return noisy_signal
|
69 |
+
|
70 |
+
|
71 |
+
stft_power = torchaudio.transforms.Spectrogram(
|
72 |
+
n_fft=512,
|
73 |
+
win_length=200,
|
74 |
+
hop_length=80,
|
75 |
+
power=2.0,
|
76 |
+
window_fn=torch.hamming_window,
|
77 |
+
)
|
78 |
+
|
79 |
+
|
80 |
+
stft_complex = torchaudio.transforms.Spectrogram(
|
81 |
+
n_fft=512,
|
82 |
+
win_length=200,
|
83 |
+
hop_length=80,
|
84 |
+
power=None,
|
85 |
+
window_fn=torch.hamming_window,
|
86 |
+
)
|
87 |
+
|
88 |
+
|
89 |
+
istft = torchaudio.transforms.InverseSpectrogram(
|
90 |
+
n_fft=512,
|
91 |
+
win_length=200,
|
92 |
+
hop_length=80,
|
93 |
+
window_fn=torch.hamming_window,
|
94 |
+
)
|
95 |
+
|
96 |
+
|
97 |
+
def enhance(mix_spec_complex: torch.Tensor, speech_irm_prediction: torch.Tensor):
|
98 |
+
mix_spec_complex = mix_spec_complex.detach().cpu()
|
99 |
+
speech_irm_prediction = speech_irm_prediction.detach().cpu()
|
100 |
+
|
101 |
+
mask_speech = speech_irm_prediction
|
102 |
+
mask_noise = 1.0 - speech_irm_prediction
|
103 |
+
|
104 |
+
speech_spec = mix_spec_complex * mask_speech
|
105 |
+
noise_spec = mix_spec_complex * mask_noise
|
106 |
+
|
107 |
+
speech_wave = istft.forward(speech_spec)
|
108 |
+
noise_wave = istft.forward(noise_spec)
|
109 |
+
|
110 |
+
return speech_wave, noise_wave
|
111 |
+
|
112 |
+
|
113 |
+
def save_audios(noise_wave: torch.Tensor,
|
114 |
+
speech_wave: torch.Tensor,
|
115 |
+
mix_wave: torch.Tensor,
|
116 |
+
speech_wave_enhanced: torch.Tensor,
|
117 |
+
noise_wave_enhanced: torch.Tensor,
|
118 |
+
output_dir: str,
|
119 |
+
sample_rate: int = 8000,
|
120 |
+
):
|
121 |
+
basename = uuid.uuid4().__str__()
|
122 |
+
output_dir = Path(output_dir) / basename
|
123 |
+
output_dir.mkdir(parents=True, exist_ok=True)
|
124 |
+
|
125 |
+
filename = output_dir / "noise_wave.wav"
|
126 |
+
torchaudio.save(filename, noise_wave, sample_rate)
|
127 |
+
filename = output_dir / "speech_wave.wav"
|
128 |
+
torchaudio.save(filename, speech_wave, sample_rate)
|
129 |
+
filename = output_dir / "mix_wave.wav"
|
130 |
+
torchaudio.save(filename, mix_wave, sample_rate)
|
131 |
+
|
132 |
+
filename = output_dir / "speech_wave_enhanced.wav"
|
133 |
+
torchaudio.save(filename, speech_wave_enhanced, sample_rate)
|
134 |
+
filename = output_dir / "noise_wave_enhanced.wav"
|
135 |
+
torchaudio.save(filename, noise_wave_enhanced, sample_rate)
|
136 |
+
|
137 |
+
return output_dir.as_posix()
|
138 |
+
|
139 |
+
|
140 |
+
def main():
|
141 |
+
args = get_args()
|
142 |
+
|
143 |
+
logger = logging_config()
|
144 |
+
|
145 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
146 |
+
n_gpu = torch.cuda.device_count()
|
147 |
+
logger.info("GPU available count: {}; device: {}".format(n_gpu, device))
|
148 |
+
|
149 |
+
logger.info("prepare model")
|
150 |
+
model = SpectrumUnetIRMPretrainedModel.from_pretrained(
|
151 |
+
pretrained_model_name_or_path=args.model_dir,
|
152 |
+
)
|
153 |
+
model.to(device)
|
154 |
+
model.eval()
|
155 |
+
|
156 |
+
# optimizer
|
157 |
+
logger.info("prepare loss_fn")
|
158 |
+
irm_mse_loss = nn.MSELoss(
|
159 |
+
reduction="mean",
|
160 |
+
)
|
161 |
+
snr_mse_loss = nn.MSELoss(
|
162 |
+
reduction="mean",
|
163 |
+
)
|
164 |
+
|
165 |
+
logger.info("read excel")
|
166 |
+
df = pd.read_excel(args.valid_dataset)
|
167 |
+
|
168 |
+
total_loss = 0.
|
169 |
+
total_examples = 0.
|
170 |
+
progress_bar = tqdm(total=len(df), desc="Evaluation")
|
171 |
+
for idx, row in df.iterrows():
|
172 |
+
noise_filename = row["noise_filename"]
|
173 |
+
noise_offset = row["noise_offset"]
|
174 |
+
noise_duration = row["noise_duration"]
|
175 |
+
|
176 |
+
speech_filename = row["speech_filename"]
|
177 |
+
speech_offset = row["speech_offset"]
|
178 |
+
speech_duration = row["speech_duration"]
|
179 |
+
|
180 |
+
snr_db = row["snr_db"]
|
181 |
+
|
182 |
+
noise_wave, _ = librosa.load(
|
183 |
+
noise_filename,
|
184 |
+
sr=8000,
|
185 |
+
offset=noise_offset,
|
186 |
+
duration=noise_duration,
|
187 |
+
)
|
188 |
+
speech_wave, _ = librosa.load(
|
189 |
+
speech_filename,
|
190 |
+
sr=8000,
|
191 |
+
offset=speech_offset,
|
192 |
+
duration=speech_duration,
|
193 |
+
)
|
194 |
+
mix_wave: np.ndarray = mix_speech_and_noise(
|
195 |
+
speech=speech_wave,
|
196 |
+
noise=noise_wave,
|
197 |
+
snr_db=snr_db,
|
198 |
+
)
|
199 |
+
noise_wave = torch.tensor(noise_wave, dtype=torch.float32)
|
200 |
+
speech_wave = torch.tensor(speech_wave, dtype=torch.float32)
|
201 |
+
mix_wave: torch.Tensor = torch.tensor(mix_wave, dtype=torch.float32)
|
202 |
+
|
203 |
+
noise_wave = noise_wave.unsqueeze(dim=0)
|
204 |
+
speech_wave = speech_wave.unsqueeze(dim=0)
|
205 |
+
mix_wave = mix_wave.unsqueeze(dim=0)
|
206 |
+
|
207 |
+
noise_spec: torch.Tensor = stft_power.forward(noise_wave)
|
208 |
+
speech_spec: torch.Tensor = stft_power.forward(speech_wave)
|
209 |
+
mix_spec: torch.Tensor = stft_power.forward(mix_wave)
|
210 |
+
|
211 |
+
noise_spec = noise_spec[:, :-1, :]
|
212 |
+
speech_spec = speech_spec[:, :-1, :]
|
213 |
+
mix_spec = mix_spec[:, :-1, :]
|
214 |
+
|
215 |
+
mix_spec_complex: torch.Tensor = stft_complex.forward(mix_wave)
|
216 |
+
# mix_spec_complex shape: [batch_size, freq_dim (257), time_steps, 2]
|
217 |
+
|
218 |
+
speech_irm = speech_spec / (noise_spec + speech_spec)
|
219 |
+
speech_irm = torch.pow(speech_irm, 1.0)
|
220 |
+
|
221 |
+
snr_db: torch.Tensor = 10 * torch.log10(
|
222 |
+
speech_spec / (noise_spec + 1e-8)
|
223 |
+
)
|
224 |
+
snr_db = torch.mean(snr_db, dim=1, keepdim=True)
|
225 |
+
# snr_db shape: [batch_size, 1, time_steps]
|
226 |
+
|
227 |
+
mix_spec = mix_spec.to(device)
|
228 |
+
speech_irm_target = speech_irm.to(device)
|
229 |
+
snr_db_target = snr_db.to(device)
|
230 |
+
|
231 |
+
with torch.no_grad():
|
232 |
+
speech_irm_prediction, lsnr_prediction = model.forward(mix_spec)
|
233 |
+
irm_loss = irm_mse_loss.forward(speech_irm_prediction, speech_irm_target)
|
234 |
+
# snr_loss = snr_mse_loss.forward(lsnr_prediction, snr_db_target)
|
235 |
+
# loss = irm_loss + 0.1 * snr_loss
|
236 |
+
loss = irm_loss
|
237 |
+
|
238 |
+
# mix_spec_complex shape: [batch_size, freq_dim (257), time_steps, 2]
|
239 |
+
# speech_irm_prediction shape: [batch_size, freq_dim (256), time_steps]
|
240 |
+
batch_size, _, time_steps = speech_irm_prediction.shape
|
241 |
+
speech_irm_prediction = torch.concat(
|
242 |
+
[
|
243 |
+
speech_irm_prediction,
|
244 |
+
0.5*torch.ones(size=(batch_size, 1, time_steps), dtype=speech_irm_prediction.dtype).to(device)
|
245 |
+
],
|
246 |
+
dim=1,
|
247 |
+
)
|
248 |
+
# speech_irm_prediction shape: [batch_size, freq_dim (257), time_steps]
|
249 |
+
speech_wave_enhanced, noise_wave_enhanced = enhance(mix_spec_complex, speech_irm_prediction)
|
250 |
+
save_audios(noise_wave, speech_wave, mix_wave, speech_wave_enhanced, noise_wave_enhanced, args.evaluation_audio_dir)
|
251 |
+
|
252 |
+
total_loss += loss.item()
|
253 |
+
total_examples += mix_spec.size(0)
|
254 |
+
|
255 |
+
evaluation_loss = total_loss / total_examples
|
256 |
+
evaluation_loss = round(evaluation_loss, 4)
|
257 |
+
|
258 |
+
progress_bar.update(1)
|
259 |
+
progress_bar.set_postfix({
|
260 |
+
"evaluation_loss": evaluation_loss,
|
261 |
+
})
|
262 |
+
|
263 |
+
if idx > args.limit:
|
264 |
+
break
|
265 |
+
|
266 |
+
return
|
267 |
+
|
268 |
+
|
269 |
+
if __name__ == '__main__':
|
270 |
+
main()
|
examples/spectrum_dfnet_aishell/yaml/config.yaml
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model_name: "spectrum_unet_irm"
|
2 |
+
|
3 |
+
# spec
|
4 |
+
sample_rate: 8000
|
5 |
+
n_fft: 512
|
6 |
+
win_length: 200
|
7 |
+
hop_length: 80
|
8 |
+
|
9 |
+
spec_bins: 256
|
10 |
+
|
11 |
+
# model
|
12 |
+
conv_channels: 64
|
13 |
+
conv_kernel_size_input:
|
14 |
+
- 3
|
15 |
+
- 3
|
16 |
+
conv_kernel_size_inner:
|
17 |
+
- 1
|
18 |
+
- 3
|
19 |
+
conv_lookahead: 0
|
20 |
+
|
21 |
+
convt_kernel_size_inner:
|
22 |
+
- 1
|
23 |
+
- 3
|
24 |
+
|
25 |
+
encoder_emb_skip_op: "none"
|
26 |
+
encoder_emb_linear_groups: 16
|
27 |
+
encoder_emb_hidden_size: 256
|
28 |
+
|
29 |
+
lsnr_max: 30
|
30 |
+
lsnr_min: -15
|
31 |
+
|
32 |
+
decoder_emb_num_layers: 3
|
33 |
+
decoder_emb_skip_op: "none"
|
34 |
+
decoder_emb_linear_groups: 16
|
35 |
+
decoder_emb_hidden_size: 256
|
36 |
+
|
37 |
+
# runtime
|
38 |
+
use_post_filter: true
|
toolbox/torchaudio/models/mpnet/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
|
5 |
+
if __name__ == '__main__':
|
6 |
+
pass
|
toolbox/torchaudio/models/mpnet/modeling_mpnet.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
"""
|
4 |
+
https://huggingface.co/spaces/LeeSangHoon/HierSpeech_TTS/blob/main/denoiser/generator.py
|
5 |
+
"""
|
6 |
+
|
7 |
+
|
8 |
+
if __name__ == '__main__':
|
9 |
+
pass
|
toolbox/torchaudio/models/spectrum_dfnet/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
|
5 |
+
if __name__ == '__main__':
|
6 |
+
pass
|
toolbox/torchaudio/models/spectrum_dfnet/configuration_spectrum_dfnet.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
from typing import Tuple
|
4 |
+
|
5 |
+
from toolbox.torchaudio.configuration_utils import PretrainedConfig
|
6 |
+
|
7 |
+
|
8 |
+
class SpectrumDfNetConfig(PretrainedConfig):
|
9 |
+
def __init__(self,
|
10 |
+
sample_rate: int = 8000,
|
11 |
+
n_fft: int = 512,
|
12 |
+
win_length: int = 200,
|
13 |
+
hop_length: int = 80,
|
14 |
+
|
15 |
+
spec_bins: int = 256,
|
16 |
+
|
17 |
+
conv_channels: int = 64,
|
18 |
+
conv_kernel_size_input: Tuple[int, int] = (3, 3),
|
19 |
+
conv_kernel_size_inner: Tuple[int, int] = (1, 3),
|
20 |
+
conv_lookahead: int = 0,
|
21 |
+
|
22 |
+
convt_kernel_size_inner: Tuple[int, int] = (1, 3),
|
23 |
+
|
24 |
+
embedding_hidden_size: int = 256,
|
25 |
+
encoder_combine_op: str = "concat",
|
26 |
+
|
27 |
+
encoder_emb_skip_op: str = "none",
|
28 |
+
encoder_emb_linear_groups: int = 16,
|
29 |
+
encoder_emb_hidden_size: int = 256,
|
30 |
+
|
31 |
+
encoder_linear_groups: int = 32,
|
32 |
+
|
33 |
+
lsnr_max: int = 30,
|
34 |
+
lsnr_min: int = -15,
|
35 |
+
norm_tau: float = 1.,
|
36 |
+
|
37 |
+
decoder_emb_num_layers: int = 3,
|
38 |
+
decoder_emb_skip_op: str = "none",
|
39 |
+
decoder_emb_linear_groups: int = 16,
|
40 |
+
decoder_emb_hidden_size: int = 256,
|
41 |
+
|
42 |
+
df_decoder_hidden_size: int = 256,
|
43 |
+
df_num_layers: int = 2,
|
44 |
+
df_order: int = 5,
|
45 |
+
df_bins: int = 96,
|
46 |
+
df_gru_skip: str = "grouped_linear",
|
47 |
+
df_decoder_linear_groups: int = 16,
|
48 |
+
df_pathway_kernel_size_t: int = 5,
|
49 |
+
df_lookahead: int = 2,
|
50 |
+
|
51 |
+
use_post_filter: bool = False,
|
52 |
+
**kwargs
|
53 |
+
):
|
54 |
+
super(SpectrumDfNetConfig, self).__init__(**kwargs)
|
55 |
+
# transform
|
56 |
+
self.sample_rate = sample_rate
|
57 |
+
self.n_fft = n_fft
|
58 |
+
self.win_length = win_length
|
59 |
+
self.hop_length = hop_length
|
60 |
+
|
61 |
+
# spectrum
|
62 |
+
self.spec_bins = spec_bins
|
63 |
+
|
64 |
+
# conv
|
65 |
+
self.conv_channels = conv_channels
|
66 |
+
self.conv_kernel_size_input = conv_kernel_size_input
|
67 |
+
self.conv_kernel_size_inner = conv_kernel_size_inner
|
68 |
+
self.conv_lookahead = conv_lookahead
|
69 |
+
|
70 |
+
self.convt_kernel_size_inner = convt_kernel_size_inner
|
71 |
+
|
72 |
+
self.embedding_hidden_size = embedding_hidden_size
|
73 |
+
|
74 |
+
# encoder
|
75 |
+
self.encoder_emb_skip_op = encoder_emb_skip_op
|
76 |
+
self.encoder_emb_linear_groups = encoder_emb_linear_groups
|
77 |
+
self.encoder_emb_hidden_size = encoder_emb_hidden_size
|
78 |
+
|
79 |
+
self.encoder_linear_groups = encoder_linear_groups
|
80 |
+
self.encoder_combine_op = encoder_combine_op
|
81 |
+
|
82 |
+
self.lsnr_max = lsnr_max
|
83 |
+
self.lsnr_min = lsnr_min
|
84 |
+
self.norm_tau = norm_tau
|
85 |
+
|
86 |
+
# decoder
|
87 |
+
self.decoder_emb_num_layers = decoder_emb_num_layers
|
88 |
+
self.decoder_emb_skip_op = decoder_emb_skip_op
|
89 |
+
self.decoder_emb_linear_groups = decoder_emb_linear_groups
|
90 |
+
self.decoder_emb_hidden_size = decoder_emb_hidden_size
|
91 |
+
|
92 |
+
# df decoder
|
93 |
+
self.df_decoder_hidden_size = df_decoder_hidden_size
|
94 |
+
self.df_num_layers = df_num_layers
|
95 |
+
self.df_order = df_order
|
96 |
+
self.df_bins = df_bins
|
97 |
+
self.df_gru_skip = df_gru_skip
|
98 |
+
self.df_decoder_linear_groups = df_decoder_linear_groups
|
99 |
+
self.df_pathway_kernel_size_t = df_pathway_kernel_size_t
|
100 |
+
self.df_lookahead = df_lookahead
|
101 |
+
|
102 |
+
# runtime
|
103 |
+
self.use_post_filter = use_post_filter
|
104 |
+
|
105 |
+
|
106 |
+
if __name__ == "__main__":
|
107 |
+
pass
|
toolbox/torchaudio/models/spectrum_dfnet/modeling_spectrum_dfnet.py
ADDED
@@ -0,0 +1,920 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import os
|
4 |
+
import math
|
5 |
+
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Union
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torchaudio
|
11 |
+
|
12 |
+
from toolbox.torchaudio.models.spectrum_dfnet.configuration_spectrum_dfnet import SpectrumDfNetConfig
|
13 |
+
from toolbox.torchaudio.configuration_utils import CONFIG_FILE
|
14 |
+
|
15 |
+
|
16 |
+
MODEL_FILE = "model.pt"
|
17 |
+
|
18 |
+
|
19 |
+
norm_layer_dict = {
|
20 |
+
"batch_norm_2d": torch.nn.BatchNorm2d
|
21 |
+
}
|
22 |
+
|
23 |
+
|
24 |
+
activation_layer_dict = {
|
25 |
+
"relu": torch.nn.ReLU,
|
26 |
+
"identity": torch.nn.Identity,
|
27 |
+
"sigmoid": torch.nn.Sigmoid,
|
28 |
+
}
|
29 |
+
|
30 |
+
|
31 |
+
class CausalConv2d(nn.Sequential):
|
32 |
+
def __init__(self,
|
33 |
+
in_channels: int,
|
34 |
+
out_channels: int,
|
35 |
+
kernel_size: Union[int, Iterable[int]],
|
36 |
+
fstride: int = 1,
|
37 |
+
dilation: int = 1,
|
38 |
+
fpad: bool = True,
|
39 |
+
bias: bool = True,
|
40 |
+
separable: bool = False,
|
41 |
+
norm_layer: str = "batch_norm_2d",
|
42 |
+
activation_layer: str = "relu",
|
43 |
+
lookahead: int = 0
|
44 |
+
):
|
45 |
+
"""
|
46 |
+
Causal Conv2d by delaying the signal for any lookahead.
|
47 |
+
|
48 |
+
Expected input format: [batch_size, channels, time_steps, spec_dim]
|
49 |
+
|
50 |
+
:param in_channels:
|
51 |
+
:param out_channels:
|
52 |
+
:param kernel_size:
|
53 |
+
:param fstride:
|
54 |
+
:param dilation:
|
55 |
+
:param fpad:
|
56 |
+
"""
|
57 |
+
super(CausalConv2d, self).__init__()
|
58 |
+
kernel_size = (kernel_size, kernel_size) if isinstance(kernel_size, int) else tuple(kernel_size)
|
59 |
+
|
60 |
+
if fpad:
|
61 |
+
fpad_ = kernel_size[1] // 2 + dilation - 1
|
62 |
+
else:
|
63 |
+
fpad_ = 0
|
64 |
+
|
65 |
+
# for last 2 dim, pad (left, right, top, bottom).
|
66 |
+
pad = (0, 0, kernel_size[0] - 1 - lookahead, lookahead)
|
67 |
+
|
68 |
+
layers = list()
|
69 |
+
if any(x > 0 for x in pad):
|
70 |
+
layers.append(nn.ConstantPad2d(pad, 0.0))
|
71 |
+
|
72 |
+
groups = math.gcd(in_channels, out_channels) if separable else 1
|
73 |
+
if groups == 1:
|
74 |
+
separable = False
|
75 |
+
if max(kernel_size) == 1:
|
76 |
+
separable = False
|
77 |
+
|
78 |
+
layers.append(
|
79 |
+
nn.Conv2d(
|
80 |
+
in_channels,
|
81 |
+
out_channels,
|
82 |
+
kernel_size=kernel_size,
|
83 |
+
padding=(0, fpad_),
|
84 |
+
stride=(1, fstride), # stride over time is always 1
|
85 |
+
dilation=(1, dilation), # dilation over time is always 1
|
86 |
+
groups=groups,
|
87 |
+
bias=bias,
|
88 |
+
)
|
89 |
+
)
|
90 |
+
|
91 |
+
if separable:
|
92 |
+
layers.append(
|
93 |
+
nn.Conv2d(
|
94 |
+
out_channels,
|
95 |
+
out_channels,
|
96 |
+
kernel_size=1,
|
97 |
+
bias=False,
|
98 |
+
)
|
99 |
+
)
|
100 |
+
|
101 |
+
if norm_layer is not None:
|
102 |
+
norm_layer = norm_layer_dict[norm_layer]
|
103 |
+
layers.append(norm_layer(out_channels))
|
104 |
+
|
105 |
+
if activation_layer is not None:
|
106 |
+
activation_layer = activation_layer_dict[activation_layer]
|
107 |
+
layers.append(activation_layer())
|
108 |
+
|
109 |
+
super().__init__(*layers)
|
110 |
+
|
111 |
+
def forward(self, inputs):
|
112 |
+
for module in self:
|
113 |
+
inputs = module(inputs)
|
114 |
+
return inputs
|
115 |
+
|
116 |
+
|
117 |
+
class CausalConvTranspose2d(nn.Sequential):
|
118 |
+
def __init__(self,
|
119 |
+
in_channels: int,
|
120 |
+
out_channels: int,
|
121 |
+
kernel_size: Union[int, Iterable[int]],
|
122 |
+
fstride: int = 1,
|
123 |
+
dilation: int = 1,
|
124 |
+
fpad: bool = True,
|
125 |
+
bias: bool = True,
|
126 |
+
separable: bool = False,
|
127 |
+
norm_layer: str = "batch_norm_2d",
|
128 |
+
activation_layer: str = "relu",
|
129 |
+
lookahead: int = 0
|
130 |
+
):
|
131 |
+
"""
|
132 |
+
Causal ConvTranspose2d.
|
133 |
+
|
134 |
+
Expected input format: [batch_size, channels, time_steps, spec_dim]
|
135 |
+
"""
|
136 |
+
super(CausalConvTranspose2d, self).__init__()
|
137 |
+
|
138 |
+
kernel_size = (kernel_size, kernel_size) if isinstance(kernel_size, int) else kernel_size
|
139 |
+
|
140 |
+
if fpad:
|
141 |
+
fpad_ = kernel_size[1] // 2
|
142 |
+
else:
|
143 |
+
fpad_ = 0
|
144 |
+
|
145 |
+
# for last 2 dim, pad (left, right, top, bottom).
|
146 |
+
pad = (0, 0, kernel_size[0] - 1 - lookahead, lookahead)
|
147 |
+
|
148 |
+
layers = []
|
149 |
+
if any(x > 0 for x in pad):
|
150 |
+
layers.append(nn.ConstantPad2d(pad, 0.0))
|
151 |
+
|
152 |
+
groups = math.gcd(in_channels, out_channels) if separable else 1
|
153 |
+
if groups == 1:
|
154 |
+
separable = False
|
155 |
+
|
156 |
+
layers.append(
|
157 |
+
nn.ConvTranspose2d(
|
158 |
+
in_channels,
|
159 |
+
out_channels,
|
160 |
+
kernel_size=kernel_size,
|
161 |
+
padding=(kernel_size[0] - 1, fpad_ + dilation - 1),
|
162 |
+
output_padding=(0, fpad_),
|
163 |
+
stride=(1, fstride), # stride over time is always 1
|
164 |
+
dilation=(1, dilation), # dilation over time is always 1
|
165 |
+
groups=groups,
|
166 |
+
bias=bias,
|
167 |
+
)
|
168 |
+
)
|
169 |
+
|
170 |
+
if separable:
|
171 |
+
layers.append(
|
172 |
+
nn.Conv2d(
|
173 |
+
out_channels,
|
174 |
+
out_channels,
|
175 |
+
kernel_size=1,
|
176 |
+
bias=False,
|
177 |
+
)
|
178 |
+
)
|
179 |
+
|
180 |
+
if norm_layer is not None:
|
181 |
+
norm_layer = norm_layer_dict[norm_layer]
|
182 |
+
layers.append(norm_layer(out_channels))
|
183 |
+
|
184 |
+
if activation_layer is not None:
|
185 |
+
activation_layer = activation_layer_dict[activation_layer]
|
186 |
+
layers.append(activation_layer())
|
187 |
+
|
188 |
+
super().__init__(*layers)
|
189 |
+
|
190 |
+
|
191 |
+
class GroupedLinear(nn.Module):
|
192 |
+
|
193 |
+
def __init__(self, input_size: int, hidden_size: int, groups: int = 1):
|
194 |
+
super().__init__()
|
195 |
+
# self.weight: Tensor
|
196 |
+
self.input_size = input_size
|
197 |
+
self.hidden_size = hidden_size
|
198 |
+
self.groups = groups
|
199 |
+
assert input_size % groups == 0, f"Input size {input_size} not divisible by {groups}"
|
200 |
+
assert hidden_size % groups == 0, f"Hidden size {hidden_size} not divisible by {groups}"
|
201 |
+
self.ws = input_size // groups
|
202 |
+
self.register_parameter(
|
203 |
+
"weight",
|
204 |
+
torch.nn.Parameter(
|
205 |
+
torch.zeros(groups, input_size // groups, hidden_size // groups), requires_grad=True
|
206 |
+
),
|
207 |
+
)
|
208 |
+
self.reset_parameters()
|
209 |
+
|
210 |
+
def reset_parameters(self):
|
211 |
+
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5)) # type: ignore
|
212 |
+
|
213 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
214 |
+
# x: [..., I]
|
215 |
+
b, t, _ = x.shape
|
216 |
+
# new_shape = list(x.shape)[:-1] + [self.groups, self.ws]
|
217 |
+
new_shape = (b, t, self.groups, self.ws)
|
218 |
+
x = x.view(new_shape)
|
219 |
+
# The better way, but not supported by torchscript
|
220 |
+
# x = x.unflatten(-1, (self.groups, self.ws)) # [..., G, I/G]
|
221 |
+
x = torch.einsum("btgi,gih->btgh", x, self.weight) # [..., G, H/G]
|
222 |
+
x = x.flatten(2, 3) # [B, T, H]
|
223 |
+
return x
|
224 |
+
|
225 |
+
def __repr__(self):
|
226 |
+
cls = self.__class__.__name__
|
227 |
+
return f"{cls}(input_size: {self.input_size}, hidden_size: {self.hidden_size}, groups: {self.groups})"
|
228 |
+
|
229 |
+
|
230 |
+
class SqueezedGRU_S(nn.Module):
|
231 |
+
"""
|
232 |
+
SGE net: Video object detection with squeezed GRU and information entropy map
|
233 |
+
https://arxiv.org/abs/2106.07224
|
234 |
+
"""
|
235 |
+
|
236 |
+
def __init__(
|
237 |
+
self,
|
238 |
+
input_size: int,
|
239 |
+
hidden_size: int,
|
240 |
+
output_size: Optional[int] = None,
|
241 |
+
num_layers: int = 1,
|
242 |
+
linear_groups: int = 8,
|
243 |
+
batch_first: bool = True,
|
244 |
+
skip_op: str = "none",
|
245 |
+
activation_layer: str = "identity",
|
246 |
+
):
|
247 |
+
super().__init__()
|
248 |
+
self.input_size = input_size
|
249 |
+
self.hidden_size = hidden_size
|
250 |
+
|
251 |
+
self.linear_in = nn.Sequential(
|
252 |
+
GroupedLinear(
|
253 |
+
input_size=input_size,
|
254 |
+
hidden_size=hidden_size,
|
255 |
+
groups=linear_groups,
|
256 |
+
),
|
257 |
+
activation_layer_dict[activation_layer](),
|
258 |
+
)
|
259 |
+
|
260 |
+
# gru skip operator
|
261 |
+
self.gru_skip_op = None
|
262 |
+
|
263 |
+
if skip_op == "none":
|
264 |
+
self.gru_skip_op = None
|
265 |
+
elif skip_op == "identity":
|
266 |
+
if not input_size != output_size:
|
267 |
+
raise AssertionError("Dimensions do not match")
|
268 |
+
self.gru_skip_op = nn.Identity()
|
269 |
+
elif skip_op == "grouped_linear":
|
270 |
+
self.gru_skip_op = GroupedLinear(
|
271 |
+
input_size=hidden_size,
|
272 |
+
hidden_size=hidden_size,
|
273 |
+
groups=linear_groups,
|
274 |
+
)
|
275 |
+
else:
|
276 |
+
raise NotImplementedError()
|
277 |
+
|
278 |
+
self.gru = nn.GRU(
|
279 |
+
input_size=hidden_size,
|
280 |
+
hidden_size=hidden_size,
|
281 |
+
num_layers=num_layers,
|
282 |
+
batch_first=batch_first,
|
283 |
+
bidirectional=False,
|
284 |
+
)
|
285 |
+
|
286 |
+
if output_size is not None:
|
287 |
+
self.linear_out = nn.Sequential(
|
288 |
+
GroupedLinear(
|
289 |
+
input_size=hidden_size,
|
290 |
+
hidden_size=output_size,
|
291 |
+
groups=linear_groups,
|
292 |
+
),
|
293 |
+
activation_layer_dict[activation_layer](),
|
294 |
+
)
|
295 |
+
else:
|
296 |
+
self.linear_out = nn.Identity()
|
297 |
+
|
298 |
+
def forward(self, inputs: torch.Tensor, h=None) -> Tuple[torch.Tensor, torch.Tensor]:
|
299 |
+
x = self.linear_in(inputs)
|
300 |
+
|
301 |
+
x, h = self.gru.forward(x, h)
|
302 |
+
|
303 |
+
x = self.linear_out(x)
|
304 |
+
|
305 |
+
if self.gru_skip_op is not None:
|
306 |
+
x = x + self.gru_skip_op(inputs)
|
307 |
+
|
308 |
+
return x, h
|
309 |
+
|
310 |
+
|
311 |
+
class Add(nn.Module):
|
312 |
+
def forward(self, a, b):
|
313 |
+
return a + b
|
314 |
+
|
315 |
+
|
316 |
+
class Concat(nn.Module):
|
317 |
+
def forward(self, a, b):
|
318 |
+
return torch.cat((a, b), dim=-1)
|
319 |
+
|
320 |
+
|
321 |
+
class Encoder(nn.Module):
|
322 |
+
def __init__(self, config: SpectrumDfNetConfig):
|
323 |
+
super(Encoder, self).__init__()
|
324 |
+
self.embedding_input_size = config.conv_channels * config.spec_bins // 4
|
325 |
+
self.embedding_output_size = config.conv_channels * config.spec_bins // 4
|
326 |
+
self.embedding_hidden_size = config.embedding_hidden_size
|
327 |
+
|
328 |
+
self.spec_conv0 = CausalConv2d(
|
329 |
+
in_channels=1,
|
330 |
+
out_channels=config.conv_channels,
|
331 |
+
kernel_size=config.conv_kernel_size_input,
|
332 |
+
bias=False,
|
333 |
+
separable=True,
|
334 |
+
fstride=1,
|
335 |
+
lookahead=config.conv_lookahead,
|
336 |
+
)
|
337 |
+
self.spec_conv1 = CausalConv2d(
|
338 |
+
in_channels=config.conv_channels,
|
339 |
+
out_channels=config.conv_channels,
|
340 |
+
kernel_size=config.conv_kernel_size_inner,
|
341 |
+
bias=False,
|
342 |
+
separable=True,
|
343 |
+
fstride=2,
|
344 |
+
lookahead=config.conv_lookahead,
|
345 |
+
)
|
346 |
+
self.spec_conv2 = CausalConv2d(
|
347 |
+
in_channels=config.conv_channels,
|
348 |
+
out_channels=config.conv_channels,
|
349 |
+
kernel_size=config.conv_kernel_size_inner,
|
350 |
+
bias=False,
|
351 |
+
separable=True,
|
352 |
+
fstride=2,
|
353 |
+
lookahead=config.conv_lookahead,
|
354 |
+
)
|
355 |
+
self.spec_conv3 = CausalConv2d(
|
356 |
+
in_channels=config.conv_channels,
|
357 |
+
out_channels=config.conv_channels,
|
358 |
+
kernel_size=config.conv_kernel_size_inner,
|
359 |
+
bias=False,
|
360 |
+
separable=True,
|
361 |
+
fstride=1,
|
362 |
+
lookahead=config.conv_lookahead,
|
363 |
+
)
|
364 |
+
|
365 |
+
self.df_conv0 = CausalConv2d(
|
366 |
+
in_channels=2,
|
367 |
+
out_channels=config.conv_channels,
|
368 |
+
kernel_size=config.conv_kernel_size_input,
|
369 |
+
bias=False,
|
370 |
+
separable=True,
|
371 |
+
)
|
372 |
+
self.df_conv1 = CausalConv2d(
|
373 |
+
in_channels=config.conv_channels,
|
374 |
+
out_channels=config.conv_channels,
|
375 |
+
kernel_size=config.conv_kernel_size_inner,
|
376 |
+
bias=False,
|
377 |
+
separable=True,
|
378 |
+
fstride=2,
|
379 |
+
)
|
380 |
+
self.df_fc_emb = nn.Sequential(
|
381 |
+
GroupedLinear(
|
382 |
+
config.conv_channels * config.df_bins // 2,
|
383 |
+
self.embedding_input_size,
|
384 |
+
groups=config.encoder_linear_groups
|
385 |
+
),
|
386 |
+
nn.ReLU(inplace=True)
|
387 |
+
)
|
388 |
+
|
389 |
+
if config.encoder_combine_op == "concat":
|
390 |
+
self.embedding_input_size *= 2
|
391 |
+
self.combine = Concat()
|
392 |
+
else:
|
393 |
+
self.combine = Add()
|
394 |
+
|
395 |
+
# emb_gru
|
396 |
+
if config.spec_bins % 8 != 0:
|
397 |
+
raise AssertionError("spec_bins should be divisible by 8")
|
398 |
+
|
399 |
+
self.emb_gru = SqueezedGRU_S(
|
400 |
+
self.embedding_input_size,
|
401 |
+
self.embedding_hidden_size,
|
402 |
+
output_size=self.embedding_output_size,
|
403 |
+
num_layers=1,
|
404 |
+
batch_first=True,
|
405 |
+
skip_op=config.encoder_emb_skip_op,
|
406 |
+
linear_groups=config.encoder_emb_linear_groups,
|
407 |
+
activation_layer="relu",
|
408 |
+
)
|
409 |
+
|
410 |
+
# lsnr
|
411 |
+
self.lsnr_fc = nn.Sequential(
|
412 |
+
nn.Linear(self.embedding_output_size, 1),
|
413 |
+
nn.Sigmoid()
|
414 |
+
)
|
415 |
+
self.lsnr_scale = config.lsnr_max - config.lsnr_min
|
416 |
+
self.lsnr_offset = config.lsnr_min
|
417 |
+
|
418 |
+
def forward(self,
|
419 |
+
feat_power: torch.Tensor,
|
420 |
+
feat_spec: torch.Tensor,
|
421 |
+
hidden_state: torch.Tensor = None,
|
422 |
+
):
|
423 |
+
# feat_power shape: (batch_size, 1, time_steps, spec_dim)
|
424 |
+
e0 = self.spec_conv0.forward(feat_power)
|
425 |
+
e1 = self.spec_conv1.forward(e0)
|
426 |
+
e2 = self.spec_conv2.forward(e1)
|
427 |
+
e3 = self.spec_conv3.forward(e2)
|
428 |
+
# e0 shape: [batch_size, channels, time_steps, spec_dim]
|
429 |
+
# e1 shape: [batch_size, channels, time_steps, spec_dim // 2]
|
430 |
+
# e2 shape: [batch_size, channels, time_steps, spec_dim // 4]
|
431 |
+
# e3 shape: [batch_size, channels, time_steps, spec_dim // 4]
|
432 |
+
|
433 |
+
# feat_spec, shape: (batch_size, 2, time_steps, df_bins)
|
434 |
+
c0 = self.df_conv0(feat_spec)
|
435 |
+
c1 = self.df_conv1(c0)
|
436 |
+
# c0 shape: [batch_size, channels, time_steps, df_bins]
|
437 |
+
# c1 shape: [batch_size, channels, time_steps, df_bins // 2]
|
438 |
+
|
439 |
+
cemb = c1.permute(0, 2, 3, 1)
|
440 |
+
# cemb shape: [batch_size, time_steps, df_bins // 2, channels]
|
441 |
+
cemb = cemb.flatten(2)
|
442 |
+
# cemb shape: [batch_size, time_steps, df_bins // 2 * channels]
|
443 |
+
cemb = self.df_fc_emb(cemb)
|
444 |
+
# cemb shape: [batch_size, time_steps, spec_dim // 4 * channels]
|
445 |
+
|
446 |
+
# e3 shape: [batch_size, channels, time_steps, spec_dim // 4]
|
447 |
+
emb = e3.permute(0, 2, 3, 1)
|
448 |
+
# emb shape: [batch_size, time_steps, spec_dim // 4, channels]
|
449 |
+
emb = emb.flatten(2)
|
450 |
+
# emb shape: [batch_size, time_steps, spec_dim // 4 * channels]
|
451 |
+
|
452 |
+
emb = self.combine(emb, cemb)
|
453 |
+
# if concat; emb shape: [batch_size, time_steps, spec_dim // 4 * channels * 2]
|
454 |
+
# if add; emb shape: [batch_size, time_steps, spec_dim // 4 * channels]
|
455 |
+
|
456 |
+
emb, h = self.emb_gru.forward(emb, hidden_state)
|
457 |
+
# emb shape: [batch_size, time_steps, spec_dim // 4 * channels]
|
458 |
+
# h shape: [batch_size, 1, spec_dim]
|
459 |
+
|
460 |
+
lsnr = self.lsnr_fc(emb) * self.lsnr_scale + self.lsnr_offset
|
461 |
+
# lsnr shape: [batch_size, time_steps, 1]
|
462 |
+
|
463 |
+
return e0, e1, e2, e3, emb, c0, lsnr, h
|
464 |
+
|
465 |
+
|
466 |
+
class Decoder(nn.Module):
|
467 |
+
def __init__(self, config: SpectrumDfNetConfig):
|
468 |
+
super(Decoder, self).__init__()
|
469 |
+
|
470 |
+
if config.spec_bins % 8 != 0:
|
471 |
+
raise AssertionError("spec_bins should be divisible by 8")
|
472 |
+
|
473 |
+
self.emb_in_dim = config.conv_channels * config.spec_bins // 4
|
474 |
+
self.emb_out_dim = config.conv_channels * config.spec_bins // 4
|
475 |
+
self.emb_hidden_dim = config.decoder_emb_hidden_size
|
476 |
+
|
477 |
+
self.emb_gru = SqueezedGRU_S(
|
478 |
+
self.emb_in_dim,
|
479 |
+
self.emb_hidden_dim,
|
480 |
+
output_size=self.emb_out_dim,
|
481 |
+
num_layers=config.decoder_emb_num_layers - 1,
|
482 |
+
batch_first=True,
|
483 |
+
skip_op=config.decoder_emb_skip_op,
|
484 |
+
linear_groups=config.decoder_emb_linear_groups,
|
485 |
+
activation_layer="relu",
|
486 |
+
)
|
487 |
+
self.conv3p = CausalConv2d(
|
488 |
+
in_channels=config.conv_channels,
|
489 |
+
out_channels=config.conv_channels,
|
490 |
+
kernel_size=1,
|
491 |
+
bias=False,
|
492 |
+
separable=True,
|
493 |
+
fstride=1,
|
494 |
+
lookahead=config.conv_lookahead,
|
495 |
+
)
|
496 |
+
self.convt3 = CausalConv2d(
|
497 |
+
in_channels=config.conv_channels,
|
498 |
+
out_channels=config.conv_channels,
|
499 |
+
kernel_size=config.conv_kernel_size_inner,
|
500 |
+
bias=False,
|
501 |
+
separable=True,
|
502 |
+
fstride=1,
|
503 |
+
lookahead=config.conv_lookahead,
|
504 |
+
)
|
505 |
+
self.conv2p = CausalConv2d(
|
506 |
+
in_channels=config.conv_channels,
|
507 |
+
out_channels=config.conv_channels,
|
508 |
+
kernel_size=1,
|
509 |
+
bias=False,
|
510 |
+
separable=True,
|
511 |
+
fstride=1,
|
512 |
+
lookahead=config.conv_lookahead,
|
513 |
+
)
|
514 |
+
self.convt2 = CausalConvTranspose2d(
|
515 |
+
in_channels=config.conv_channels,
|
516 |
+
out_channels=config.conv_channels,
|
517 |
+
kernel_size=config.convt_kernel_size_inner,
|
518 |
+
bias=False,
|
519 |
+
separable=True,
|
520 |
+
fstride=2,
|
521 |
+
lookahead=config.conv_lookahead,
|
522 |
+
)
|
523 |
+
self.conv1p = CausalConv2d(
|
524 |
+
in_channels=config.conv_channels,
|
525 |
+
out_channels=config.conv_channels,
|
526 |
+
kernel_size=1,
|
527 |
+
bias=False,
|
528 |
+
separable=True,
|
529 |
+
fstride=1,
|
530 |
+
lookahead=config.conv_lookahead,
|
531 |
+
)
|
532 |
+
self.convt1 = CausalConvTranspose2d(
|
533 |
+
in_channels=config.conv_channels,
|
534 |
+
out_channels=config.conv_channels,
|
535 |
+
kernel_size=config.convt_kernel_size_inner,
|
536 |
+
bias=False,
|
537 |
+
separable=True,
|
538 |
+
fstride=2,
|
539 |
+
lookahead=config.conv_lookahead,
|
540 |
+
)
|
541 |
+
self.conv0p = CausalConv2d(
|
542 |
+
in_channels=config.conv_channels,
|
543 |
+
out_channels=config.conv_channels,
|
544 |
+
kernel_size=1,
|
545 |
+
bias=False,
|
546 |
+
separable=True,
|
547 |
+
fstride=1,
|
548 |
+
lookahead=config.conv_lookahead,
|
549 |
+
)
|
550 |
+
self.conv0_out = CausalConv2d(
|
551 |
+
in_channels=config.conv_channels,
|
552 |
+
out_channels=1,
|
553 |
+
kernel_size=config.conv_kernel_size_inner,
|
554 |
+
activation_layer="sigmoid",
|
555 |
+
bias=False,
|
556 |
+
separable=True,
|
557 |
+
fstride=1,
|
558 |
+
lookahead=config.conv_lookahead,
|
559 |
+
)
|
560 |
+
|
561 |
+
def forward(self, emb, e3, e2, e1, e0) -> torch.Tensor:
|
562 |
+
# Estimates erb mask
|
563 |
+
b, _, t, f8 = e3.shape
|
564 |
+
|
565 |
+
# emb shape: [batch_size, time_steps, (freq_dim // 4) * conv_channels]
|
566 |
+
emb, _ = self.emb_gru(emb)
|
567 |
+
# emb shape: [batch_size, conv_channels, time_steps, freq_dim // 4]
|
568 |
+
emb = emb.view(b, t, f8, -1).permute(0, 3, 1, 2)
|
569 |
+
e3 = self.convt3(self.conv3p(e3) + emb)
|
570 |
+
# e3 shape: [batch_size, conv_channels, time_steps, freq_dim // 4]
|
571 |
+
e2 = self.convt2(self.conv2p(e2) + e3)
|
572 |
+
# e2 shape: [batch_size, conv_channels, time_steps, freq_dim // 2]
|
573 |
+
e1 = self.convt1(self.conv1p(e1) + e2)
|
574 |
+
# e1 shape: [batch_size, conv_channels, time_steps, freq_dim]
|
575 |
+
mask = self.conv0_out(self.conv0p(e0) + e1)
|
576 |
+
# mask shape: [batch_size, 1, time_steps, freq_dim]
|
577 |
+
return mask
|
578 |
+
|
579 |
+
|
580 |
+
class DfDecoder(nn.Module):
|
581 |
+
def __init__(self, config: SpectrumDfNetConfig):
|
582 |
+
super(DfDecoder, self).__init__()
|
583 |
+
|
584 |
+
self.embedding_input_size = config.conv_channels * config.spec_bins // 4
|
585 |
+
self.df_decoder_hidden_size = config.df_decoder_hidden_size
|
586 |
+
self.df_num_layers = config.df_num_layers
|
587 |
+
|
588 |
+
self.df_order = config.df_order
|
589 |
+
|
590 |
+
self.df_bins = config.df_bins
|
591 |
+
self.df_out_ch = config.df_order * 2
|
592 |
+
|
593 |
+
self.df_convp = CausalConv2d(
|
594 |
+
config.conv_channels,
|
595 |
+
self.df_out_ch,
|
596 |
+
fstride=1,
|
597 |
+
kernel_size=(config.df_pathway_kernel_size_t, 1),
|
598 |
+
separable=True,
|
599 |
+
bias=False,
|
600 |
+
)
|
601 |
+
self.df_gru = SqueezedGRU_S(
|
602 |
+
self.embedding_input_size,
|
603 |
+
self.df_decoder_hidden_size,
|
604 |
+
num_layers=self.df_num_layers,
|
605 |
+
batch_first=True,
|
606 |
+
skip_op="none",
|
607 |
+
activation_layer="relu",
|
608 |
+
)
|
609 |
+
|
610 |
+
if config.df_gru_skip == "none":
|
611 |
+
self.df_skip = None
|
612 |
+
elif config.df_gru_skip == "identity":
|
613 |
+
if config.embedding_hidden_size != config.df_decoder_hidden_size:
|
614 |
+
raise AssertionError("Dimensions do not match")
|
615 |
+
self.df_skip = nn.Identity()
|
616 |
+
elif config.df_gru_skip == "grouped_linear":
|
617 |
+
self.df_skip = GroupedLinear(
|
618 |
+
self.embedding_input_size,
|
619 |
+
self.df_decoder_hidden_size,
|
620 |
+
groups=config.df_decoder_linear_groups
|
621 |
+
)
|
622 |
+
else:
|
623 |
+
raise NotImplementedError()
|
624 |
+
|
625 |
+
self.df_out: nn.Module
|
626 |
+
out_dim = self.df_bins * self.df_out_ch
|
627 |
+
|
628 |
+
self.df_out = nn.Sequential(
|
629 |
+
GroupedLinear(
|
630 |
+
input_size=self.df_decoder_hidden_size,
|
631 |
+
hidden_size=out_dim,
|
632 |
+
groups=config.df_decoder_linear_groups
|
633 |
+
),
|
634 |
+
nn.Tanh()
|
635 |
+
)
|
636 |
+
self.df_fc_a = nn.Sequential(
|
637 |
+
nn.Linear(self.df_decoder_hidden_size, 1),
|
638 |
+
nn.Sigmoid()
|
639 |
+
)
|
640 |
+
|
641 |
+
def forward(self, emb: torch.Tensor, c0: torch.Tensor) -> torch.Tensor:
|
642 |
+
# emb shape: [batch_size, time_steps, df_bins // 4 * channels]
|
643 |
+
b, t, _ = emb.shape
|
644 |
+
df_coefs, _ = self.df_gru(emb)
|
645 |
+
if self.df_skip is not None:
|
646 |
+
df_coefs = df_coefs + self.df_skip(emb)
|
647 |
+
# df_coefs shape: [batch_size, time_steps, df_decoder_hidden_size]
|
648 |
+
|
649 |
+
# c0 shape: [batch_size, channels, time_steps, df_bins]
|
650 |
+
c0 = self.df_convp(c0)
|
651 |
+
# c0 shape: [batch_size, df_order * 2, time_steps, df_bins]
|
652 |
+
c0 = c0.permute(0, 2, 3, 1)
|
653 |
+
# c0 shape: [batch_size, time_steps, df_bins, df_order * 2]
|
654 |
+
|
655 |
+
df_coefs = self.df_out(df_coefs) # [B, T, F*O*2], O: df_order
|
656 |
+
# df_coefs shape: [batch_size, time_steps, df_bins * df_order * 2]
|
657 |
+
df_coefs = df_coefs.view(b, t, self.df_bins, self.df_out_ch)
|
658 |
+
# df_coefs shape: [batch_size, time_steps, df_bins, df_order * 2]
|
659 |
+
df_coefs = df_coefs + c0
|
660 |
+
# df_coefs shape: [batch_size, time_steps, df_bins, df_order * 2]
|
661 |
+
return df_coefs
|
662 |
+
|
663 |
+
|
664 |
+
class DfOutputReshapeMF(nn.Module):
|
665 |
+
"""Coefficients output reshape for multiframe/MultiFrameModule
|
666 |
+
|
667 |
+
Requires input of shape B, C, T, F, 2.
|
668 |
+
"""
|
669 |
+
|
670 |
+
def __init__(self, df_order: int, df_bins: int):
|
671 |
+
super().__init__()
|
672 |
+
self.df_order = df_order
|
673 |
+
self.df_bins = df_bins
|
674 |
+
|
675 |
+
def forward(self, coefs: torch.Tensor) -> torch.Tensor:
|
676 |
+
# [B, T, F, O*2] -> [B, O, T, F, 2]
|
677 |
+
new_shape = list(coefs.shape)
|
678 |
+
new_shape[-1] = -1
|
679 |
+
new_shape.append(2)
|
680 |
+
coefs = coefs.view(new_shape)
|
681 |
+
coefs = coefs.permute(0, 3, 1, 2, 4)
|
682 |
+
return coefs
|
683 |
+
|
684 |
+
|
685 |
+
class Mask(nn.Module):
|
686 |
+
def __init__(self, use_post_filter: bool = False, eps: float = 1e-12):
|
687 |
+
super().__init__()
|
688 |
+
self.use_post_filter = use_post_filter
|
689 |
+
self.eps = eps
|
690 |
+
|
691 |
+
def post_filter(self, mask: torch.Tensor, beta: float = 0.02) -> torch.Tensor:
|
692 |
+
"""
|
693 |
+
Post-Filter
|
694 |
+
|
695 |
+
A Perceptually-Motivated Approach for Low-Complexity, Real-Time Enhancement of Fullband Speech.
|
696 |
+
https://arxiv.org/abs/2008.04259
|
697 |
+
|
698 |
+
:param mask: Real valued mask, typically of shape [B, C, T, F].
|
699 |
+
:param beta: Global gain factor.
|
700 |
+
:return:
|
701 |
+
"""
|
702 |
+
mask_sin = mask * torch.sin(np.pi * mask / 2)
|
703 |
+
mask_pf = (1 + beta) * mask / (1 + beta * mask.div(mask_sin.clamp_min(self.eps)).pow(2))
|
704 |
+
return mask_pf
|
705 |
+
|
706 |
+
def forward(self, spec: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
|
707 |
+
# spec shape: [batch_size, 1, time_steps, spec_bins, 2]
|
708 |
+
|
709 |
+
if not self.training and self.use_post_filter:
|
710 |
+
mask = self.post_filter(mask)
|
711 |
+
|
712 |
+
# mask shape: [batch_size, 1, time_steps, spec_bins]
|
713 |
+
mask = mask.unsqueeze(4)
|
714 |
+
# mask shape: [batch_size, 1, time_steps, spec_bins, 1]
|
715 |
+
return spec * mask
|
716 |
+
|
717 |
+
|
718 |
+
class DeepFiltering(nn.Module):
|
719 |
+
def __init__(self,
|
720 |
+
df_bins: int,
|
721 |
+
df_order: int,
|
722 |
+
lookahead: int = 0,
|
723 |
+
):
|
724 |
+
super(DeepFiltering, self).__init__()
|
725 |
+
self.df_bins = df_bins
|
726 |
+
self.df_order = df_order
|
727 |
+
self.need_unfold = df_order > 1
|
728 |
+
self.lookahead = lookahead
|
729 |
+
|
730 |
+
self.pad = nn.ConstantPad2d((0, 0, df_order - 1 - lookahead, lookahead), 0.0)
|
731 |
+
|
732 |
+
def spec_unfold(self, spec: torch.Tensor):
|
733 |
+
"""
|
734 |
+
Pads and unfolds the spectrogram according to frame_size.
|
735 |
+
:param spec: complex Tensor, Spectrogram of shape [B, C, T, F].
|
736 |
+
:return: Tensor, Unfolded spectrogram of shape [B, C, T, F, N], where N: frame_size.
|
737 |
+
"""
|
738 |
+
if self.need_unfold:
|
739 |
+
# spec shape: [batch_size, spec_bins, time_steps]
|
740 |
+
spec_pad = self.pad(spec)
|
741 |
+
# spec_pad shape: [batch_size, 1, time_steps_pad, spec_bins]
|
742 |
+
spec_unfold = spec_pad.unfold(2, self.df_order, 1)
|
743 |
+
# spec_unfold shape: [batch_size, 1, time_steps, spec_bins, df_order]
|
744 |
+
return spec_unfold
|
745 |
+
else:
|
746 |
+
return spec.unsqueeze(-1)
|
747 |
+
|
748 |
+
def forward(self,
|
749 |
+
spec: torch.Tensor,
|
750 |
+
coefs: torch.Tensor,
|
751 |
+
):
|
752 |
+
# spec shape: [batch_size, 1, time_steps, spec_bins, 2]
|
753 |
+
spec_u = self.spec_unfold(torch.view_as_complex(spec))
|
754 |
+
# spec_u shape: [batch_size, 1, time_steps, spec_bins, df_order]
|
755 |
+
|
756 |
+
# coefs shape: [batch_size, df_order, time_steps, df_bins, 2]
|
757 |
+
coefs = torch.view_as_complex(coefs)
|
758 |
+
# coefs shape: [batch_size, df_order, time_steps, df_bins]
|
759 |
+
spec_f = spec_u.narrow(-2, 0, self.df_bins)
|
760 |
+
# spec_f shape: [batch_size, 1, time_steps, df_bins, df_order]
|
761 |
+
|
762 |
+
coefs = coefs.view(coefs.shape[0], -1, self.df_order, *coefs.shape[2:])
|
763 |
+
# coefs shape: [batch_size, 1, df_order, time_steps, df_bins]
|
764 |
+
|
765 |
+
spec_f = self.df(spec_f, coefs)
|
766 |
+
# spec_f shape: [batch_size, 1, time_steps, df_bins]
|
767 |
+
|
768 |
+
if self.training:
|
769 |
+
spec = spec.clone()
|
770 |
+
spec[..., :self.df_bins, :] = torch.view_as_real(spec_f)
|
771 |
+
# spec shape: [batch_size, 1, time_steps, spec_bins, 2]
|
772 |
+
return spec
|
773 |
+
|
774 |
+
@staticmethod
|
775 |
+
def df(spec: torch.Tensor, coefs: torch.Tensor) -> torch.Tensor:
|
776 |
+
"""
|
777 |
+
Deep filter implementation using `torch.einsum`. Requires unfolded spectrogram.
|
778 |
+
:param spec: (complex Tensor). Spectrogram of shape [B, C, T, F, N].
|
779 |
+
:param coefs: (complex Tensor). Coefficients of shape [B, C, N, T, F].
|
780 |
+
:return: (complex Tensor). Spectrogram of shape [B, C, T, F].
|
781 |
+
"""
|
782 |
+
return torch.einsum("...tfn,...ntf->...tf", spec, coefs)
|
783 |
+
|
784 |
+
|
785 |
+
class SpectrumDfNet(nn.Module):
|
786 |
+
def __init__(self, config: SpectrumDfNetConfig):
|
787 |
+
super(SpectrumDfNet, self).__init__()
|
788 |
+
self.config = config
|
789 |
+
self.encoder = Encoder(config)
|
790 |
+
self.decoder = Decoder(config)
|
791 |
+
|
792 |
+
self.df_decoder = DfDecoder(config)
|
793 |
+
self.df_out_transform = DfOutputReshapeMF(config.df_order, config.df_bins)
|
794 |
+
self.df_op = DeepFiltering(
|
795 |
+
df_bins=config.df_bins,
|
796 |
+
df_order=config.df_order,
|
797 |
+
lookahead=config.df_lookahead,
|
798 |
+
)
|
799 |
+
|
800 |
+
self.mask = Mask(use_post_filter=config.use_post_filter)
|
801 |
+
|
802 |
+
def forward(self,
|
803 |
+
spec_complex: torch.Tensor,
|
804 |
+
):
|
805 |
+
feat_power = torch.square(torch.abs(spec_complex))
|
806 |
+
feat_power = feat_power.unsqueeze(1).permute(0, 1, 3, 2)
|
807 |
+
# feat_power shape: [batch_size, spec_bins, time_steps]
|
808 |
+
# feat_power shape: [batch_size, 1, spec_bins, time_steps]
|
809 |
+
# feat_power shape: [batch_size, 1, time_steps, spec_bins]
|
810 |
+
|
811 |
+
# spec shape: [batch_size, spec_bins, time_steps]
|
812 |
+
feat_spec = torch.view_as_real(spec_complex)
|
813 |
+
# spec shape: [batch_size, spec_bins, time_steps, 2]
|
814 |
+
feat_spec = feat_spec.permute(0, 3, 2, 1)
|
815 |
+
# feat_spec shape: [batch_size, 2, time_steps, spec_bins]
|
816 |
+
feat_spec = feat_spec[..., :self.df_decoder.df_bins]
|
817 |
+
# feat_spec shape: [batch_size, 2, time_steps, df_bins]
|
818 |
+
|
819 |
+
# spec shape: [batch_size, spec_bins, time_steps]
|
820 |
+
spec = torch.unsqueeze(spec_complex, dim=1)
|
821 |
+
# spec shape: [batch_size, 1, spec_bins, time_steps]
|
822 |
+
spec = spec.permute(0, 1, 3, 2)
|
823 |
+
# spec shape: [batch_size, 1, time_steps, spec_bins]
|
824 |
+
spec = torch.view_as_real(spec)
|
825 |
+
# spec shape: [batch_size, 1, time_steps, spec_bins, 2]
|
826 |
+
|
827 |
+
e0, e1, e2, e3, emb, c0, lsnr, h = self.encoder.forward(feat_power, feat_spec)
|
828 |
+
|
829 |
+
mask = self.decoder.forward(emb, e3, e2, e1, e0)
|
830 |
+
# mask shape: [batch_size, 1, time_steps, spec_bins]
|
831 |
+
if torch.any(mask > 1) or torch.any(mask < 0):
|
832 |
+
raise AssertionError
|
833 |
+
|
834 |
+
spec_m = self.mask.forward(spec, mask)
|
835 |
+
|
836 |
+
# lsnr shape: [batch_size, time_steps, 1]
|
837 |
+
lsnr = torch.transpose(lsnr, dim0=2, dim1=1)
|
838 |
+
# lsnr shape: [batch_size, 1, time_steps]
|
839 |
+
|
840 |
+
df_coefs = self.df_decoder.forward(emb, c0)
|
841 |
+
df_coefs = self.df_out_transform(df_coefs)
|
842 |
+
# df_coefs shape: [batch_size, df_order, time_steps, df_bins, 2]
|
843 |
+
|
844 |
+
spec_e = self.df_op.forward(spec.clone(), df_coefs)
|
845 |
+
# spec_e shape: [batch_size, 1, time_steps, spec_bins, 2]
|
846 |
+
|
847 |
+
spec_e[..., self.df_decoder.df_bins:, :] = spec_m[..., self.df_decoder.df_bins:, :]
|
848 |
+
return spec_e, mask, lsnr
|
849 |
+
|
850 |
+
|
851 |
+
class SpectrumDfNetPretrainedModel(SpectrumDfNet):
|
852 |
+
def __init__(self,
|
853 |
+
config: SpectrumDfNetConfig,
|
854 |
+
):
|
855 |
+
super(SpectrumDfNetPretrainedModel, self).__init__(
|
856 |
+
config=config,
|
857 |
+
)
|
858 |
+
|
859 |
+
@classmethod
|
860 |
+
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
|
861 |
+
config = SpectrumDfNetConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
|
862 |
+
|
863 |
+
model = cls(config)
|
864 |
+
|
865 |
+
if os.path.isdir(pretrained_model_name_or_path):
|
866 |
+
ckpt_file = os.path.join(pretrained_model_name_or_path, MODEL_FILE)
|
867 |
+
else:
|
868 |
+
ckpt_file = pretrained_model_name_or_path
|
869 |
+
|
870 |
+
with open(ckpt_file, "rb") as f:
|
871 |
+
state_dict = torch.load(f, map_location="cpu", weights_only=True)
|
872 |
+
model.load_state_dict(state_dict, strict=True)
|
873 |
+
return model
|
874 |
+
|
875 |
+
def save_pretrained(self,
|
876 |
+
save_directory: Union[str, os.PathLike],
|
877 |
+
state_dict: Optional[dict] = None,
|
878 |
+
):
|
879 |
+
|
880 |
+
model = self
|
881 |
+
|
882 |
+
if state_dict is None:
|
883 |
+
state_dict = model.state_dict()
|
884 |
+
|
885 |
+
os.makedirs(save_directory, exist_ok=True)
|
886 |
+
|
887 |
+
# save state dict
|
888 |
+
model_file = os.path.join(save_directory, MODEL_FILE)
|
889 |
+
torch.save(state_dict, model_file)
|
890 |
+
|
891 |
+
# save config
|
892 |
+
config_file = os.path.join(save_directory, CONFIG_FILE)
|
893 |
+
self.config.to_yaml_file(config_file)
|
894 |
+
return save_directory
|
895 |
+
|
896 |
+
|
897 |
+
def main():
|
898 |
+
|
899 |
+
transformer = torchaudio.transforms.Spectrogram(
|
900 |
+
n_fft=512,
|
901 |
+
win_length=200,
|
902 |
+
hop_length=80,
|
903 |
+
window_fn=torch.hamming_window,
|
904 |
+
power=None,
|
905 |
+
)
|
906 |
+
|
907 |
+
config = SpectrumDfNetConfig()
|
908 |
+
model = SpectrumDfNet(config=config)
|
909 |
+
|
910 |
+
inputs = torch.randn(size=(1, 16000), dtype=torch.float32)
|
911 |
+
spec_complex = transformer.forward(inputs)
|
912 |
+
spec_complex = spec_complex[:, :-1, :]
|
913 |
+
|
914 |
+
output = model.forward(spec_complex)
|
915 |
+
print(output[0].shape)
|
916 |
+
return
|
917 |
+
|
918 |
+
|
919 |
+
if __name__ == '__main__':
|
920 |
+
main()
|