Spaces:
Running
Running
add frcrn model
Browse files- examples/conv_tasnet/step_2_train_model.py +3 -2
- examples/frcrn/run.sh +154 -0
- examples/frcrn/step_1_prepare_data.py +162 -0
- examples/frcrn/step_2_train_model.py +436 -0
- examples/frcrn/yaml/config.yaml +24 -0
- toolbox/torchaudio/losses/irm.py +111 -0
- toolbox/torchaudio/losses/spectral.py +72 -1
- toolbox/torchaudio/models/frcrn/complex_nn.py +258 -0
- toolbox/torchaudio/models/frcrn/configuration_frcrn.py +67 -0
- toolbox/torchaudio/models/frcrn/conv_stft.py +147 -0
- toolbox/torchaudio/models/frcrn/modeling_frcrn.py +317 -2
- toolbox/torchaudio/models/frcrn/unet.py +359 -0
- toolbox/torchaudio/models/frcrn/uni_deep_fsmn.py +71 -0
examples/conv_tasnet/step_2_train_model.py
CHANGED
@@ -300,7 +300,7 @@ def main():
|
|
300 |
# loss = 1.0 * ae_loss + 0.8 * neg_si_snr_loss + 0.7 * mr_stft_loss + 0.5 * neg_stoi_loss
|
301 |
# loss = 2.0 * mr_stft_loss + 0.8 * ae_loss + 0.7 * neg_si_snr_loss + 0.5 * neg_stoi_loss
|
302 |
# loss = 1.0 * ae_loss + 0.8 * neg_si_snr_loss + 0.7 * mr_stft_loss + 0.5 * neg_stoi_loss + 0.5 * pesq_loss
|
303 |
-
loss = 0.
|
304 |
if torch.any(torch.isnan(loss)) or torch.any(torch.isinf(loss)):
|
305 |
logger.info(f"find nan or inf in loss.")
|
306 |
continue
|
@@ -381,7 +381,8 @@ def main():
|
|
381 |
# loss = 1.0 * ae_loss + 0.8 * neg_si_snr_loss + 0.5 * mr_stft_loss + 0.3 * neg_stoi_loss
|
382 |
# loss = 1.0 * ae_loss + 0.8 * neg_si_snr_loss + 0.7 * mr_stft_loss + 0.5 * neg_stoi_loss
|
383 |
# loss = 2.0 * mr_stft_loss + 0.8 * ae_loss + 0.7 * neg_si_snr_loss + 0.5 * neg_stoi_loss
|
384 |
-
loss = 1.0 * ae_loss + 0.8 * neg_si_snr_loss + 0.7 * mr_stft_loss + 0.5 * neg_stoi_loss + 0.5 * pesq_loss
|
|
|
385 |
if torch.any(torch.isnan(loss)) or torch.any(torch.isinf(loss)):
|
386 |
logger.info(f"find nan or inf in loss.")
|
387 |
continue
|
|
|
300 |
# loss = 1.0 * ae_loss + 0.8 * neg_si_snr_loss + 0.7 * mr_stft_loss + 0.5 * neg_stoi_loss
|
301 |
# loss = 2.0 * mr_stft_loss + 0.8 * ae_loss + 0.7 * neg_si_snr_loss + 0.5 * neg_stoi_loss
|
302 |
# loss = 1.0 * ae_loss + 0.8 * neg_si_snr_loss + 0.7 * mr_stft_loss + 0.5 * neg_stoi_loss + 0.5 * pesq_loss
|
303 |
+
loss = 0.1 * ae_loss + 0.1 * neg_si_snr_loss + 1.0 * mr_stft_loss + 0.2 * neg_stoi_loss + 0.2 * pesq_loss
|
304 |
if torch.any(torch.isnan(loss)) or torch.any(torch.isinf(loss)):
|
305 |
logger.info(f"find nan or inf in loss.")
|
306 |
continue
|
|
|
381 |
# loss = 1.0 * ae_loss + 0.8 * neg_si_snr_loss + 0.5 * mr_stft_loss + 0.3 * neg_stoi_loss
|
382 |
# loss = 1.0 * ae_loss + 0.8 * neg_si_snr_loss + 0.7 * mr_stft_loss + 0.5 * neg_stoi_loss
|
383 |
# loss = 2.0 * mr_stft_loss + 0.8 * ae_loss + 0.7 * neg_si_snr_loss + 0.5 * neg_stoi_loss
|
384 |
+
# loss = 1.0 * ae_loss + 0.8 * neg_si_snr_loss + 0.7 * mr_stft_loss + 0.5 * neg_stoi_loss + 0.5 * pesq_loss
|
385 |
+
loss = 0.1 * ae_loss + 0.1 * neg_si_snr_loss + 1.0 * mr_stft_loss + 0.2 * neg_stoi_loss + 0.2 * pesq_loss
|
386 |
if torch.any(torch.isnan(loss)) or torch.any(torch.isinf(loss)):
|
387 |
logger.info(f"find nan or inf in loss.")
|
388 |
continue
|
examples/frcrn/run.sh
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
: <<'END'
|
4 |
+
|
5 |
+
|
6 |
+
sh run.sh --stage 2 --stop_stage 2 --system_version centos --file_folder_name file_dir --final_model_name conv-tasnet-dns3-20250319 \
|
7 |
+
--noise_dir "/data/tianxing/HuggingDatasets/nx_noise/data/noise/dns3-noise" \
|
8 |
+
--speech_dir "/data/tianxing/HuggingDatasets/nx_noise/data/speech/dns3-speech" \
|
9 |
+
--max_epochs 400
|
10 |
+
|
11 |
+
|
12 |
+
END
|
13 |
+
|
14 |
+
|
15 |
+
# params
|
16 |
+
system_version="windows";
|
17 |
+
verbose=true;
|
18 |
+
stage=0 # start from 0 if you need to start from data preparation
|
19 |
+
stop_stage=9
|
20 |
+
|
21 |
+
work_dir="$(pwd)"
|
22 |
+
file_folder_name=file_folder_name
|
23 |
+
final_model_name=final_model_name
|
24 |
+
config_file="yaml/config.yaml"
|
25 |
+
limit=10
|
26 |
+
|
27 |
+
noise_dir=/data/tianxing/HuggingDatasets/nx_noise/data/noise
|
28 |
+
speech_dir=/data/tianxing/HuggingDatasets/aishell/data_aishell/wav/train
|
29 |
+
|
30 |
+
max_count=10000000
|
31 |
+
|
32 |
+
nohup_name=nohup.out
|
33 |
+
|
34 |
+
# model params
|
35 |
+
batch_size=64
|
36 |
+
max_epochs=200
|
37 |
+
save_top_k=10
|
38 |
+
patience=5
|
39 |
+
|
40 |
+
|
41 |
+
# parse options
|
42 |
+
while true; do
|
43 |
+
[ -z "${1:-}" ] && break; # break if there are no arguments
|
44 |
+
case "$1" in
|
45 |
+
--*) name=$(echo "$1" | sed s/^--// | sed s/-/_/g);
|
46 |
+
eval '[ -z "${'"$name"'+xxx}" ]' && echo "$0: invalid option $1" 1>&2 && exit 1;
|
47 |
+
old_value="(eval echo \\$$name)";
|
48 |
+
if [ "${old_value}" == "true" ] || [ "${old_value}" == "false" ]; then
|
49 |
+
was_bool=true;
|
50 |
+
else
|
51 |
+
was_bool=false;
|
52 |
+
fi
|
53 |
+
|
54 |
+
# Set the variable to the right value-- the escaped quotes make it work if
|
55 |
+
# the option had spaces, like --cmd "queue.pl -sync y"
|
56 |
+
eval "${name}=\"$2\"";
|
57 |
+
|
58 |
+
# Check that Boolean-valued arguments are really Boolean.
|
59 |
+
if $was_bool && [[ "$2" != "true" && "$2" != "false" ]]; then
|
60 |
+
echo "$0: expected \"true\" or \"false\": $1 $2" 1>&2
|
61 |
+
exit 1;
|
62 |
+
fi
|
63 |
+
shift 2;
|
64 |
+
;;
|
65 |
+
|
66 |
+
*) break;
|
67 |
+
esac
|
68 |
+
done
|
69 |
+
|
70 |
+
file_dir="${work_dir}/${file_folder_name}"
|
71 |
+
final_model_dir="${work_dir}/../../trained_models/${final_model_name}";
|
72 |
+
evaluation_audio_dir="${file_dir}/evaluation_audio"
|
73 |
+
|
74 |
+
train_dataset="${file_dir}/train.jsonl"
|
75 |
+
valid_dataset="${file_dir}/valid.jsonl"
|
76 |
+
|
77 |
+
$verbose && echo "system_version: ${system_version}"
|
78 |
+
$verbose && echo "file_folder_name: ${file_folder_name}"
|
79 |
+
|
80 |
+
if [ $system_version == "windows" ]; then
|
81 |
+
alias python3='D:/Users/tianx/PycharmProjects/virtualenv/nx_denoise/Scripts/python.exe'
|
82 |
+
elif [ $system_version == "centos" ] || [ $system_version == "ubuntu" ]; then
|
83 |
+
#source /data/local/bin/nx_denoise/bin/activate
|
84 |
+
alias python3='/data/local/bin/nx_denoise/bin/python3'
|
85 |
+
fi
|
86 |
+
|
87 |
+
|
88 |
+
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
|
89 |
+
$verbose && echo "stage 1: prepare data"
|
90 |
+
cd "${work_dir}" || exit 1
|
91 |
+
python3 step_1_prepare_data.py \
|
92 |
+
--file_dir "${file_dir}" \
|
93 |
+
--noise_dir "${noise_dir}" \
|
94 |
+
--speech_dir "${speech_dir}" \
|
95 |
+
--train_dataset "${train_dataset}" \
|
96 |
+
--valid_dataset "${valid_dataset}" \
|
97 |
+
--max_count "${max_count}" \
|
98 |
+
|
99 |
+
fi
|
100 |
+
|
101 |
+
|
102 |
+
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
|
103 |
+
$verbose && echo "stage 2: train model"
|
104 |
+
cd "${work_dir}" || exit 1
|
105 |
+
python3 step_2_train_model.py \
|
106 |
+
--train_dataset "${train_dataset}" \
|
107 |
+
--valid_dataset "${valid_dataset}" \
|
108 |
+
--serialization_dir "${file_dir}" \
|
109 |
+
--config_file "${config_file}" \
|
110 |
+
|
111 |
+
fi
|
112 |
+
|
113 |
+
|
114 |
+
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
|
115 |
+
$verbose && echo "stage 3: test model"
|
116 |
+
cd "${work_dir}" || exit 1
|
117 |
+
python3 step_3_evaluation.py \
|
118 |
+
--valid_dataset "${valid_dataset}" \
|
119 |
+
--model_dir "${file_dir}/best" \
|
120 |
+
--evaluation_audio_dir "${evaluation_audio_dir}" \
|
121 |
+
--limit "${limit}" \
|
122 |
+
|
123 |
+
fi
|
124 |
+
|
125 |
+
|
126 |
+
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
|
127 |
+
$verbose && echo "stage 4: collect files"
|
128 |
+
cd "${work_dir}" || exit 1
|
129 |
+
|
130 |
+
mkdir -p ${final_model_dir}
|
131 |
+
|
132 |
+
cp "${file_dir}/best"/* "${final_model_dir}"
|
133 |
+
cp -r "${file_dir}/evaluation_audio" "${final_model_dir}"
|
134 |
+
|
135 |
+
cd "${final_model_dir}/.." || exit 1;
|
136 |
+
|
137 |
+
if [ -e "${final_model_name}.zip" ]; then
|
138 |
+
rm -rf "${final_model_name}_backup.zip"
|
139 |
+
mv "${final_model_name}.zip" "${final_model_name}_backup.zip"
|
140 |
+
fi
|
141 |
+
|
142 |
+
zip -r "${final_model_name}.zip" "${final_model_name}"
|
143 |
+
rm -rf "${final_model_name}"
|
144 |
+
|
145 |
+
fi
|
146 |
+
|
147 |
+
|
148 |
+
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
|
149 |
+
$verbose && echo "stage 5: clear file_dir"
|
150 |
+
cd "${work_dir}" || exit 1
|
151 |
+
|
152 |
+
rm -rf "${file_dir}";
|
153 |
+
|
154 |
+
fi
|
examples/frcrn/step_1_prepare_data.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import argparse
|
4 |
+
import json
|
5 |
+
import os
|
6 |
+
from pathlib import Path
|
7 |
+
import random
|
8 |
+
import sys
|
9 |
+
|
10 |
+
pwd = os.path.abspath(os.path.dirname(__file__))
|
11 |
+
sys.path.append(os.path.join(pwd, "../../"))
|
12 |
+
|
13 |
+
import librosa
|
14 |
+
import numpy as np
|
15 |
+
from tqdm import tqdm
|
16 |
+
|
17 |
+
|
18 |
+
def get_args():
|
19 |
+
parser = argparse.ArgumentParser()
|
20 |
+
parser.add_argument("--file_dir", default="./", type=str)
|
21 |
+
|
22 |
+
parser.add_argument(
|
23 |
+
"--noise_dir",
|
24 |
+
default=r"E:\Users\tianx\HuggingDatasets\nx_noise\data\noise",
|
25 |
+
type=str
|
26 |
+
)
|
27 |
+
parser.add_argument(
|
28 |
+
"--speech_dir",
|
29 |
+
default=r"E:\programmer\asr_datasets\aishell\data_aishell\wav\train",
|
30 |
+
type=str
|
31 |
+
)
|
32 |
+
|
33 |
+
parser.add_argument("--train_dataset", default="train.jsonl", type=str)
|
34 |
+
parser.add_argument("--valid_dataset", default="valid.jsonl", type=str)
|
35 |
+
|
36 |
+
parser.add_argument("--duration", default=4.0, type=float)
|
37 |
+
parser.add_argument("--min_snr_db", default=-10, type=float)
|
38 |
+
parser.add_argument("--max_snr_db", default=20, type=float)
|
39 |
+
|
40 |
+
parser.add_argument("--target_sample_rate", default=8000, type=int)
|
41 |
+
|
42 |
+
parser.add_argument("--max_count", default=10000, type=int)
|
43 |
+
|
44 |
+
args = parser.parse_args()
|
45 |
+
return args
|
46 |
+
|
47 |
+
|
48 |
+
def filename_generator(data_dir: str):
|
49 |
+
data_dir = Path(data_dir)
|
50 |
+
for filename in data_dir.glob("**/*.wav"):
|
51 |
+
yield filename.as_posix()
|
52 |
+
|
53 |
+
|
54 |
+
def target_second_signal_generator(data_dir: str, duration: int = 2, sample_rate: int = 8000, max_epoch: int = 20000):
|
55 |
+
data_dir = Path(data_dir)
|
56 |
+
for epoch_idx in range(max_epoch):
|
57 |
+
for filename in data_dir.glob("**/*.wav"):
|
58 |
+
signal, _ = librosa.load(filename.as_posix(), sr=sample_rate)
|
59 |
+
raw_duration = librosa.get_duration(y=signal, sr=sample_rate)
|
60 |
+
|
61 |
+
if raw_duration < duration:
|
62 |
+
# print(f"duration less than {duration} s. skip filename: {filename.as_posix()}")
|
63 |
+
continue
|
64 |
+
if signal.ndim != 1:
|
65 |
+
raise AssertionError(f"expected ndim 1, instead of {signal.ndim}")
|
66 |
+
|
67 |
+
signal_length = len(signal)
|
68 |
+
win_size = int(duration * sample_rate)
|
69 |
+
for begin in range(0, signal_length - win_size, win_size):
|
70 |
+
if np.sum(signal[begin: begin+win_size]) == 0:
|
71 |
+
continue
|
72 |
+
row = {
|
73 |
+
"epoch_idx": epoch_idx,
|
74 |
+
"filename": filename.as_posix(),
|
75 |
+
"raw_duration": round(raw_duration, 4),
|
76 |
+
"offset": round(begin / sample_rate, 4),
|
77 |
+
"duration": round(duration, 4),
|
78 |
+
}
|
79 |
+
yield row
|
80 |
+
|
81 |
+
|
82 |
+
def main():
|
83 |
+
args = get_args()
|
84 |
+
|
85 |
+
file_dir = Path(args.file_dir)
|
86 |
+
file_dir.mkdir(exist_ok=True)
|
87 |
+
|
88 |
+
noise_dir = Path(args.noise_dir)
|
89 |
+
speech_dir = Path(args.speech_dir)
|
90 |
+
|
91 |
+
noise_generator = target_second_signal_generator(
|
92 |
+
noise_dir.as_posix(),
|
93 |
+
duration=args.duration,
|
94 |
+
sample_rate=args.target_sample_rate,
|
95 |
+
max_epoch=100000,
|
96 |
+
)
|
97 |
+
speech_generator = target_second_signal_generator(
|
98 |
+
speech_dir.as_posix(),
|
99 |
+
duration=args.duration,
|
100 |
+
sample_rate=args.target_sample_rate,
|
101 |
+
max_epoch=1,
|
102 |
+
)
|
103 |
+
|
104 |
+
dataset = list()
|
105 |
+
|
106 |
+
count = 0
|
107 |
+
process_bar = tqdm(desc="build dataset excel")
|
108 |
+
with open(args.train_dataset, "w", encoding="utf-8") as ftrain, open(args.valid_dataset, "w", encoding="utf-8") as fvalid:
|
109 |
+
for noise, speech in zip(noise_generator, speech_generator):
|
110 |
+
if count >= args.max_count:
|
111 |
+
break
|
112 |
+
|
113 |
+
noise_filename = noise["filename"]
|
114 |
+
noise_raw_duration = noise["raw_duration"]
|
115 |
+
noise_offset = noise["offset"]
|
116 |
+
noise_duration = noise["duration"]
|
117 |
+
|
118 |
+
speech_filename = speech["filename"]
|
119 |
+
speech_raw_duration = speech["raw_duration"]
|
120 |
+
speech_offset = speech["offset"]
|
121 |
+
speech_duration = speech["duration"]
|
122 |
+
|
123 |
+
random1 = random.random()
|
124 |
+
random2 = random.random()
|
125 |
+
|
126 |
+
row = {
|
127 |
+
"noise_filename": noise_filename,
|
128 |
+
"noise_raw_duration": noise_raw_duration,
|
129 |
+
"noise_offset": noise_offset,
|
130 |
+
"noise_duration": noise_duration,
|
131 |
+
|
132 |
+
"speech_filename": speech_filename,
|
133 |
+
"speech_raw_duration": speech_raw_duration,
|
134 |
+
"speech_offset": speech_offset,
|
135 |
+
"speech_duration": speech_duration,
|
136 |
+
|
137 |
+
"snr_db": random.uniform(args.min_snr_db, args.max_snr_db),
|
138 |
+
|
139 |
+
"random1": random1,
|
140 |
+
}
|
141 |
+
row = json.dumps(row, ensure_ascii=False)
|
142 |
+
if random2 < (1 / 300 / 1):
|
143 |
+
fvalid.write(f"{row}\n")
|
144 |
+
else:
|
145 |
+
ftrain.write(f"{row}\n")
|
146 |
+
|
147 |
+
count += 1
|
148 |
+
duration_seconds = count * args.duration
|
149 |
+
duration_hours = duration_seconds / 3600
|
150 |
+
|
151 |
+
process_bar.update(n=1)
|
152 |
+
process_bar.set_postfix({
|
153 |
+
# "duration_seconds": round(duration_seconds, 4),
|
154 |
+
"duration_hours": round(duration_hours, 4),
|
155 |
+
|
156 |
+
})
|
157 |
+
|
158 |
+
return
|
159 |
+
|
160 |
+
|
161 |
+
if __name__ == "__main__":
|
162 |
+
main()
|
examples/frcrn/step_2_train_model.py
ADDED
@@ -0,0 +1,436 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import argparse
|
4 |
+
import json
|
5 |
+
import logging
|
6 |
+
from logging.handlers import TimedRotatingFileHandler
|
7 |
+
import os
|
8 |
+
import platform
|
9 |
+
from pathlib import Path
|
10 |
+
import random
|
11 |
+
import sys
|
12 |
+
import shutil
|
13 |
+
from typing import List
|
14 |
+
|
15 |
+
pwd = os.path.abspath(os.path.dirname(__file__))
|
16 |
+
sys.path.append(os.path.join(pwd, "../../"))
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
import torch
|
20 |
+
import torch.nn as nn
|
21 |
+
from torch.nn import functional as F
|
22 |
+
from torch.utils.data.dataloader import DataLoader
|
23 |
+
from tqdm import tqdm
|
24 |
+
|
25 |
+
from toolbox.torch.utils.data.dataset.denoise_jsonl_dataset import DenoiseJsonlDataset
|
26 |
+
from toolbox.torchaudio.losses.snr import NegativeSISNRLoss
|
27 |
+
from toolbox.torchaudio.metrics.pesq import run_pesq_score
|
28 |
+
from toolbox.torchaudio.models.frcrn.configuration_frcrn import FRCRNConfig
|
29 |
+
from toolbox.torchaudio.models.frcrn.modeling_frcrn import FRCRN, FRCRNPretrainedModel
|
30 |
+
|
31 |
+
|
32 |
+
def get_args():
|
33 |
+
parser = argparse.ArgumentParser()
|
34 |
+
parser.add_argument("--train_dataset", default="train.xlsx", type=str)
|
35 |
+
parser.add_argument("--valid_dataset", default="valid.xlsx", type=str)
|
36 |
+
|
37 |
+
parser.add_argument("--num_serialized_models_to_keep", default=10, type=int)
|
38 |
+
parser.add_argument("--patience", default=5, type=int)
|
39 |
+
parser.add_argument("--serialization_dir", default="serialization_dir", type=str)
|
40 |
+
|
41 |
+
parser.add_argument("--config_file", default="config.yaml", type=str)
|
42 |
+
|
43 |
+
args = parser.parse_args()
|
44 |
+
return args
|
45 |
+
|
46 |
+
|
47 |
+
def logging_config(file_dir: str):
|
48 |
+
fmt = "%(asctime)s - %(name)s - %(levelname)s %(filename)s:%(lineno)d > %(message)s"
|
49 |
+
|
50 |
+
logging.basicConfig(format=fmt,
|
51 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
52 |
+
level=logging.INFO)
|
53 |
+
file_handler = TimedRotatingFileHandler(
|
54 |
+
filename=os.path.join(file_dir, "main.log"),
|
55 |
+
encoding="utf-8",
|
56 |
+
when="D",
|
57 |
+
interval=1,
|
58 |
+
backupCount=7
|
59 |
+
)
|
60 |
+
file_handler.setLevel(logging.INFO)
|
61 |
+
file_handler.setFormatter(logging.Formatter(fmt))
|
62 |
+
logger = logging.getLogger(__name__)
|
63 |
+
logger.addHandler(file_handler)
|
64 |
+
|
65 |
+
return logger
|
66 |
+
|
67 |
+
|
68 |
+
class CollateFunction(object):
|
69 |
+
def __init__(self):
|
70 |
+
pass
|
71 |
+
|
72 |
+
def __call__(self, batch: List[dict]):
|
73 |
+
clean_audios = list()
|
74 |
+
noisy_audios = list()
|
75 |
+
|
76 |
+
for sample in batch:
|
77 |
+
# noise_wave: torch.Tensor = sample["noise_wave"]
|
78 |
+
clean_audio: torch.Tensor = sample["speech_wave"]
|
79 |
+
noisy_audio: torch.Tensor = sample["mix_wave"]
|
80 |
+
# snr_db: float = sample["snr_db"]
|
81 |
+
|
82 |
+
clean_audios.append(clean_audio)
|
83 |
+
noisy_audios.append(noisy_audio)
|
84 |
+
|
85 |
+
clean_audios = torch.stack(clean_audios)
|
86 |
+
noisy_audios = torch.stack(noisy_audios)
|
87 |
+
|
88 |
+
# assert
|
89 |
+
if torch.any(torch.isnan(clean_audios)) or torch.any(torch.isinf(clean_audios)):
|
90 |
+
raise AssertionError("nan or inf in clean_audios")
|
91 |
+
if torch.any(torch.isnan(noisy_audios)) or torch.any(torch.isinf(noisy_audios)):
|
92 |
+
raise AssertionError("nan or inf in noisy_audios")
|
93 |
+
return clean_audios, noisy_audios
|
94 |
+
|
95 |
+
|
96 |
+
collate_fn = CollateFunction()
|
97 |
+
|
98 |
+
|
99 |
+
def main():
|
100 |
+
args = get_args()
|
101 |
+
|
102 |
+
config = FRCRNConfig.from_pretrained(
|
103 |
+
pretrained_model_name_or_path=args.config_file,
|
104 |
+
)
|
105 |
+
|
106 |
+
serialization_dir = Path(args.serialization_dir)
|
107 |
+
serialization_dir.mkdir(parents=True, exist_ok=True)
|
108 |
+
|
109 |
+
logger = logging_config(serialization_dir)
|
110 |
+
|
111 |
+
random.seed(config.seed)
|
112 |
+
np.random.seed(config.seed)
|
113 |
+
torch.manual_seed(config.seed)
|
114 |
+
logger.info(f"set seed: {config.seed}")
|
115 |
+
|
116 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
117 |
+
n_gpu = torch.cuda.device_count()
|
118 |
+
logger.info(f"GPU available count: {n_gpu}; device: {device}")
|
119 |
+
|
120 |
+
# datasets
|
121 |
+
train_dataset = DenoiseJsonlDataset(
|
122 |
+
jsonl_file=args.train_dataset,
|
123 |
+
expected_sample_rate=config.sample_rate,
|
124 |
+
max_wave_value=32768.0,
|
125 |
+
min_snr_db=config.min_snr_db,
|
126 |
+
max_snr_db=config.max_snr_db,
|
127 |
+
# skip=225000,
|
128 |
+
)
|
129 |
+
valid_dataset = DenoiseJsonlDataset(
|
130 |
+
jsonl_file=args.valid_dataset,
|
131 |
+
expected_sample_rate=config.sample_rate,
|
132 |
+
max_wave_value=32768.0,
|
133 |
+
min_snr_db=config.min_snr_db,
|
134 |
+
max_snr_db=config.max_snr_db,
|
135 |
+
)
|
136 |
+
train_data_loader = DataLoader(
|
137 |
+
dataset=train_dataset,
|
138 |
+
batch_size=args.batch_size,
|
139 |
+
# shuffle=True,
|
140 |
+
sampler=None,
|
141 |
+
# Linux 系统中可以使用多个子进程加载数据, 而在 Windows 系统中不能.
|
142 |
+
num_workers=0 if platform.system() == "Windows" else os.cpu_count() // 2,
|
143 |
+
collate_fn=collate_fn,
|
144 |
+
pin_memory=False,
|
145 |
+
prefetch_factor=2,
|
146 |
+
)
|
147 |
+
valid_data_loader = DataLoader(
|
148 |
+
dataset=valid_dataset,
|
149 |
+
batch_size=args.batch_size,
|
150 |
+
# shuffle=True,
|
151 |
+
sampler=None,
|
152 |
+
# Linux 系统中可以使用多个子进程加载数据, 而在 Windows 系统中不能.
|
153 |
+
num_workers=0 if platform.system() == "Windows" else os.cpu_count() // 2,
|
154 |
+
collate_fn=collate_fn,
|
155 |
+
pin_memory=False,
|
156 |
+
prefetch_factor=2,
|
157 |
+
)
|
158 |
+
|
159 |
+
# models
|
160 |
+
logger.info(f"prepare models. config_file: {args.config_file}")
|
161 |
+
model = FRCRNPretrainedModel(config).to(device)
|
162 |
+
model.to(device)
|
163 |
+
model.train()
|
164 |
+
|
165 |
+
# optimizer
|
166 |
+
logger.info("prepare optimizer, lr_scheduler, loss_fn, categorical_accuracy")
|
167 |
+
optimizer = torch.optim.AdamW(model.get_params(weight_decay=config.weight_decay), config.lr)
|
168 |
+
|
169 |
+
# resume training
|
170 |
+
last_step_idx = -1
|
171 |
+
last_epoch = -1
|
172 |
+
for step_idx_str in serialization_dir.glob("steps-*"):
|
173 |
+
step_idx_str = Path(step_idx_str)
|
174 |
+
step_idx = step_idx_str.stem.split("-")[1]
|
175 |
+
step_idx = int(step_idx)
|
176 |
+
if step_idx > last_step_idx:
|
177 |
+
last_step_idx = step_idx
|
178 |
+
last_epoch = 1
|
179 |
+
|
180 |
+
if last_step_idx != -1:
|
181 |
+
logger.info(f"resume from steps-{last_step_idx}.")
|
182 |
+
model_pt = serialization_dir / f"steps-{last_step_idx}/model.pt"
|
183 |
+
optimizer_pth = serialization_dir / f"steps-{last_step_idx}/optimizer.pth"
|
184 |
+
|
185 |
+
logger.info(f"load state dict for model.")
|
186 |
+
with open(model_pt.as_posix(), "rb") as f:
|
187 |
+
state_dict = torch.load(f, map_location="cpu", weights_only=True)
|
188 |
+
model.load_state_dict(state_dict, strict=True)
|
189 |
+
|
190 |
+
logger.info(f"load state dict for optimizer.")
|
191 |
+
with open(optimizer_pth.as_posix(), "rb") as f:
|
192 |
+
state_dict = torch.load(f, map_location="cpu", weights_only=True)
|
193 |
+
optimizer.load_state_dict(state_dict)
|
194 |
+
|
195 |
+
if config.lr_scheduler == "CosineAnnealingLR":
|
196 |
+
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
|
197 |
+
optimizer,
|
198 |
+
last_epoch=last_epoch,
|
199 |
+
# T_max=10 * config.eval_steps,
|
200 |
+
# eta_min=0.01 * config.lr,
|
201 |
+
**config.lr_scheduler_kwargs,
|
202 |
+
)
|
203 |
+
elif config.lr_scheduler == "MultiStepLR":
|
204 |
+
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
205 |
+
optimizer,
|
206 |
+
last_epoch=last_epoch,
|
207 |
+
milestones=[10000, 20000, 30000, 40000, 50000], gamma=0.5
|
208 |
+
)
|
209 |
+
else:
|
210 |
+
raise AssertionError(f"invalid lr_scheduler: {config.lr_scheduler}")
|
211 |
+
|
212 |
+
neg_si_snr_loss_fn = NegativeSISNRLoss(reduction="mean").to(device)
|
213 |
+
|
214 |
+
# training loop
|
215 |
+
|
216 |
+
# state
|
217 |
+
average_pesq_score = 1000000000
|
218 |
+
average_loss = 1000000000
|
219 |
+
average_neg_si_snr_loss = 1000000000
|
220 |
+
average_mag_loss = 1000000000
|
221 |
+
average_pha_loss = 1000000000
|
222 |
+
|
223 |
+
model_list = list()
|
224 |
+
best_epoch_idx = None
|
225 |
+
best_step_idx = None
|
226 |
+
best_metric = None
|
227 |
+
patience_count = 0
|
228 |
+
|
229 |
+
step_idx = 0 if last_step_idx == -1 else last_step_idx
|
230 |
+
|
231 |
+
logger.info("training")
|
232 |
+
for epoch_idx in range(max(0, last_epoch+1), config.max_epochs):
|
233 |
+
# train
|
234 |
+
model.train()
|
235 |
+
|
236 |
+
total_pesq_score = 0.
|
237 |
+
total_loss = 0.
|
238 |
+
total_neg_si_snr_loss = 0.
|
239 |
+
total_map_loss = 0.
|
240 |
+
total_pha_loss = 0.
|
241 |
+
total_batches = 0.
|
242 |
+
|
243 |
+
progress_bar_train = tqdm(
|
244 |
+
initial=step_idx,
|
245 |
+
desc="Training; epoch-{}".format(epoch_idx),
|
246 |
+
)
|
247 |
+
for train_batch in train_data_loader:
|
248 |
+
clean_audios, noisy_audios = train_batch
|
249 |
+
clean_audios: torch.Tensor = clean_audios.to(device)
|
250 |
+
noisy_audios: torch.Tensor = noisy_audios.to(device)
|
251 |
+
|
252 |
+
est_spec, est_wav, est_mask = model.forward(noisy_audios)
|
253 |
+
denoise_audios = est_wav
|
254 |
+
|
255 |
+
neg_si_snr_loss = neg_si_snr_loss_fn.forward(denoise_audios, clean_audios)
|
256 |
+
map_loss, pha_loss = model.mag_pha_loss_fn(est_mask, clean_audios, noisy_audios)
|
257 |
+
|
258 |
+
loss = 0.5 * map_loss + 0.5 * pha_loss + 0.5 * neg_si_snr_loss
|
259 |
+
if torch.any(torch.isnan(loss)) or torch.any(torch.isinf(loss)):
|
260 |
+
logger.info(f"find nan or inf in loss.")
|
261 |
+
continue
|
262 |
+
|
263 |
+
denoise_audios_list_r = list(denoise_audios.detach().cpu().numpy())
|
264 |
+
clean_audios_list_r = list(clean_audios.detach().cpu().numpy())
|
265 |
+
pesq_score = run_pesq_score(clean_audios_list_r, denoise_audios_list_r, sample_rate=config.sample_rate, mode="nb")
|
266 |
+
|
267 |
+
optimizer.zero_grad()
|
268 |
+
loss.backward()
|
269 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=config.clip_grad_norm)
|
270 |
+
optimizer.step()
|
271 |
+
lr_scheduler.step()
|
272 |
+
|
273 |
+
total_pesq_score += pesq_score
|
274 |
+
total_loss += loss.item()
|
275 |
+
total_neg_si_snr_loss += neg_si_snr_loss.item()
|
276 |
+
total_map_loss += map_loss.item()
|
277 |
+
total_pha_loss += pha_loss.item()
|
278 |
+
total_batches += 1
|
279 |
+
|
280 |
+
average_pesq_score = round(total_pesq_score / total_batches, 4)
|
281 |
+
average_loss = round(total_loss / total_batches, 4)
|
282 |
+
average_neg_si_snr_loss = round(total_neg_si_snr_loss / total_batches, 4)
|
283 |
+
average_mag_loss = round(total_map_loss / total_batches, 4)
|
284 |
+
average_pha_loss = round(total_pha_loss / total_batches, 4)
|
285 |
+
|
286 |
+
progress_bar_train.update(1)
|
287 |
+
progress_bar_train.set_postfix({
|
288 |
+
"lr": lr_scheduler.get_last_lr()[0],
|
289 |
+
"pesq_score": average_pesq_score,
|
290 |
+
"loss": average_loss,
|
291 |
+
"neg_si_snr_loss": average_neg_si_snr_loss,
|
292 |
+
"mag_loss": average_mag_loss,
|
293 |
+
"pha_loss": average_pha_loss,
|
294 |
+
})
|
295 |
+
|
296 |
+
# evaluation
|
297 |
+
step_idx += 1
|
298 |
+
if step_idx % config.eval_steps == 0:
|
299 |
+
with torch.no_grad():
|
300 |
+
torch.cuda.empty_cache()
|
301 |
+
|
302 |
+
total_pesq_score = 0.
|
303 |
+
total_loss = 0.
|
304 |
+
total_neg_si_snr_loss = 0.
|
305 |
+
total_map_loss = 0.
|
306 |
+
total_pha_loss = 0.
|
307 |
+
total_batches = 0.
|
308 |
+
|
309 |
+
progress_bar_train.close()
|
310 |
+
progress_bar_eval = tqdm(
|
311 |
+
desc="Evaluation; steps-{}k".format(int(step_idx/1000)),
|
312 |
+
)
|
313 |
+
for eval_batch in valid_data_loader:
|
314 |
+
clean_audios, noisy_audios = eval_batch
|
315 |
+
clean_audios = clean_audios.to(device)
|
316 |
+
noisy_audios = noisy_audios.to(device)
|
317 |
+
|
318 |
+
est_spec, est_wav, est_mask = model.forward(noisy_audios)
|
319 |
+
denoise_audios = est_wav
|
320 |
+
|
321 |
+
neg_si_snr_loss = neg_si_snr_loss_fn.forward(denoise_audios, clean_audios)
|
322 |
+
map_loss, pha_loss = model.mag_pha_loss_fn(est_mask, clean_audios, noisy_audios)
|
323 |
+
|
324 |
+
loss = 0.5 * map_loss + 0.5 * pha_loss + 0.5 * neg_si_snr_loss
|
325 |
+
if torch.any(torch.isnan(loss)) or torch.any(torch.isinf(loss)):
|
326 |
+
logger.info(f"find nan or inf in loss.")
|
327 |
+
continue
|
328 |
+
|
329 |
+
denoise_audios_list_r = list(denoise_audios.detach().cpu().numpy())
|
330 |
+
clean_audios_list_r = list(clean_audios.detach().cpu().numpy())
|
331 |
+
pesq_score = run_pesq_score(clean_audios_list_r, denoise_audios_list_r, sample_rate=config.sample_rate, mode="nb")
|
332 |
+
|
333 |
+
total_pesq_score += pesq_score
|
334 |
+
total_loss += loss.item()
|
335 |
+
total_neg_si_snr_loss += neg_si_snr_loss.item()
|
336 |
+
total_map_loss += map_loss.item()
|
337 |
+
total_pha_loss += pha_loss.item()
|
338 |
+
total_batches += 1
|
339 |
+
|
340 |
+
average_pesq_score = round(total_pesq_score / total_batches, 4)
|
341 |
+
average_loss = round(total_loss / total_batches, 4)
|
342 |
+
average_neg_si_snr_loss = round(total_neg_si_snr_loss / total_batches, 4)
|
343 |
+
average_mag_loss = round(total_map_loss / total_batches, 4)
|
344 |
+
average_pha_loss = round(total_pha_loss / total_batches, 4)
|
345 |
+
|
346 |
+
progress_bar_eval.update(1)
|
347 |
+
progress_bar_eval.set_postfix({
|
348 |
+
"lr": lr_scheduler.get_last_lr()[0],
|
349 |
+
"pesq_score": average_pesq_score,
|
350 |
+
"loss": average_loss,
|
351 |
+
"neg_si_snr_loss": average_neg_si_snr_loss,
|
352 |
+
"mag_loss": average_mag_loss,
|
353 |
+
"pha_loss": average_pha_loss,
|
354 |
+
})
|
355 |
+
|
356 |
+
total_pesq_score = 0.
|
357 |
+
total_loss = 0.
|
358 |
+
total_neg_si_snr_loss = 0.
|
359 |
+
total_map_loss = 0.
|
360 |
+
total_pha_loss = 0.
|
361 |
+
total_batches = 0.
|
362 |
+
|
363 |
+
progress_bar_eval.close()
|
364 |
+
progress_bar_train = tqdm(
|
365 |
+
initial=progress_bar_train.n,
|
366 |
+
postfix=progress_bar_train.postfix,
|
367 |
+
desc=progress_bar_train.desc,
|
368 |
+
)
|
369 |
+
|
370 |
+
# save path
|
371 |
+
save_dir = serialization_dir / "steps-{}".format(step_idx)
|
372 |
+
save_dir.mkdir(parents=True, exist_ok=False)
|
373 |
+
|
374 |
+
# save models
|
375 |
+
model.save_pretrained(save_dir.as_posix())
|
376 |
+
|
377 |
+
model_list.append(save_dir)
|
378 |
+
if len(model_list) >= args.num_serialized_models_to_keep:
|
379 |
+
model_to_delete: Path = model_list.pop(0)
|
380 |
+
shutil.rmtree(model_to_delete.as_posix())
|
381 |
+
|
382 |
+
# save optim
|
383 |
+
torch.save(optimizer.state_dict(), (save_dir / "optimizer.pth").as_posix())
|
384 |
+
|
385 |
+
# save metric
|
386 |
+
if best_metric is None:
|
387 |
+
best_epoch_idx = epoch_idx
|
388 |
+
best_step_idx = step_idx
|
389 |
+
best_metric = average_pesq_score
|
390 |
+
elif average_pesq_score > best_metric:
|
391 |
+
# great is better.
|
392 |
+
best_epoch_idx = epoch_idx
|
393 |
+
best_step_idx = step_idx
|
394 |
+
best_metric = average_pesq_score
|
395 |
+
else:
|
396 |
+
pass
|
397 |
+
|
398 |
+
metrics = {
|
399 |
+
"epoch_idx": epoch_idx,
|
400 |
+
"best_epoch_idx": best_epoch_idx,
|
401 |
+
"best_step_idx": best_step_idx,
|
402 |
+
"pesq_score": average_pesq_score,
|
403 |
+
"loss": average_loss,
|
404 |
+
"neg_si_snr_loss": average_neg_si_snr_loss,
|
405 |
+
"mag_loss": average_mag_loss,
|
406 |
+
"pha_loss": average_pha_loss,
|
407 |
+
}
|
408 |
+
metrics_filename = save_dir / "metrics_epoch.json"
|
409 |
+
with open(metrics_filename, "w", encoding="utf-8") as f:
|
410 |
+
json.dump(metrics, f, indent=4, ensure_ascii=False)
|
411 |
+
|
412 |
+
# save best
|
413 |
+
best_dir = serialization_dir / "best"
|
414 |
+
if best_epoch_idx == epoch_idx and best_step_idx == step_idx:
|
415 |
+
if best_dir.exists():
|
416 |
+
shutil.rmtree(best_dir)
|
417 |
+
shutil.copytree(save_dir, best_dir)
|
418 |
+
|
419 |
+
# early stop
|
420 |
+
early_stop_flag = False
|
421 |
+
if best_epoch_idx == epoch_idx and best_step_idx == step_idx:
|
422 |
+
patience_count = 0
|
423 |
+
else:
|
424 |
+
patience_count += 1
|
425 |
+
if patience_count >= args.patience:
|
426 |
+
early_stop_flag = True
|
427 |
+
|
428 |
+
# early stop
|
429 |
+
if early_stop_flag:
|
430 |
+
break
|
431 |
+
|
432 |
+
return
|
433 |
+
|
434 |
+
|
435 |
+
if __name__ == "__main__":
|
436 |
+
main()
|
examples/frcrn/yaml/config.yaml
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
model_name: "frcrn"
|
3 |
+
|
4 |
+
num_gpus: -1
|
5 |
+
|
6 |
+
lr: 0.001
|
7 |
+
max_epochs: 100
|
8 |
+
weight_decay: 1.0e-05
|
9 |
+
clip_grad_norm: 10.0
|
10 |
+
seed: 1234
|
11 |
+
|
12 |
+
sample_rate: 8000
|
13 |
+
segment_size: 32000
|
14 |
+
nfft: 512
|
15 |
+
win_size: 512
|
16 |
+
hop_size: 256
|
17 |
+
win_type: hann
|
18 |
+
|
19 |
+
use_complex_networks: true
|
20 |
+
model_depth: 20
|
21 |
+
model_complexity: 45
|
22 |
+
|
23 |
+
num_workers: 4
|
24 |
+
batch_size: 4
|
toolbox/torchaudio/losses/irm.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
from typing import List
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
from torch.nn import functional as F
|
8 |
+
|
9 |
+
|
10 |
+
class CIRMLoss(nn.Module):
|
11 |
+
def __init__(self,
|
12 |
+
n_fft: int = 512,
|
13 |
+
win_size: int = 512,
|
14 |
+
hop_size: int = 256,
|
15 |
+
center: bool = True,
|
16 |
+
eps: float = 1e-8,
|
17 |
+
reduction: str = "mean",
|
18 |
+
):
|
19 |
+
super(CIRMLoss, self).__init__()
|
20 |
+
self.n_fft = n_fft
|
21 |
+
self.win_size = win_size
|
22 |
+
self.hop_size = hop_size
|
23 |
+
self.center = center
|
24 |
+
self.eps = eps
|
25 |
+
self.reduction = reduction
|
26 |
+
|
27 |
+
self.window = nn.Parameter(torch.hann_window(win_size), requires_grad=False)
|
28 |
+
|
29 |
+
if reduction not in ("sum", "mean"):
|
30 |
+
raise AssertionError(f"param reduction must be sum or mean.")
|
31 |
+
|
32 |
+
def forward(self, clean: torch.Tensor, noisy: torch.Tensor, mask_real: torch.Tensor, mask_imag: torch.Tensor):
|
33 |
+
"""
|
34 |
+
:param clean: waveform
|
35 |
+
:param noisy: waveform
|
36 |
+
:param mask_real: shape: [b, f, t]
|
37 |
+
:param mask_imag: shape: [b, f, t]
|
38 |
+
:return:
|
39 |
+
"""
|
40 |
+
if noisy.shape != clean.shape:
|
41 |
+
raise AssertionError("Input signals must have the same shape")
|
42 |
+
|
43 |
+
# clean_stft, noisy_stft shape: [b, f, t]
|
44 |
+
clean_stft = torch.stft(
|
45 |
+
clean,
|
46 |
+
n_fft=self.n_fft,
|
47 |
+
win_length=self.win_size,
|
48 |
+
hop_length=self.hop_size,
|
49 |
+
window=self.window,
|
50 |
+
center=self.center,
|
51 |
+
pad_mode="reflect",
|
52 |
+
normalized=False,
|
53 |
+
return_complex=True
|
54 |
+
)
|
55 |
+
noisy_stft = torch.stft(
|
56 |
+
noisy,
|
57 |
+
n_fft=self.n_fft,
|
58 |
+
win_length=self.win_size,
|
59 |
+
hop_length=self.hop_size,
|
60 |
+
window=self.window,
|
61 |
+
center=self.center,
|
62 |
+
pad_mode="reflect",
|
63 |
+
normalized=False,
|
64 |
+
return_complex=True
|
65 |
+
)
|
66 |
+
|
67 |
+
# [b, f, t]
|
68 |
+
clean_stft_spec_real = torch.real(clean_stft)
|
69 |
+
clean_stft_spec_imag = torch.imag(clean_stft)
|
70 |
+
noisy_stft_spec_real = torch.real(noisy_stft)
|
71 |
+
noisy_stft_spec_imag = torch.imag(noisy_stft)
|
72 |
+
noisy_power = noisy_stft_spec_real ** 2 + noisy_stft_spec_imag ** 2
|
73 |
+
|
74 |
+
sr = clean_stft_spec_real
|
75 |
+
yr = noisy_stft_spec_real
|
76 |
+
si = clean_stft_spec_imag
|
77 |
+
yi = noisy_stft_spec_imag
|
78 |
+
y_pow = noisy_power
|
79 |
+
# (Sr * Yr + Si * Yi) / (Y_pow + 1e-8)
|
80 |
+
gth_mask_real = (sr * yr + si * yi) / (y_pow + self.eps)
|
81 |
+
# (Si * Yr - Sr * Yi) / (Y_pow + 1e-8)
|
82 |
+
gth_mask_imag = (sr * yr - si * yi) / (y_pow + self.eps)
|
83 |
+
|
84 |
+
gth_mask_real[gth_mask_real > 2] = 1
|
85 |
+
gth_mask_real[gth_mask_real < -2] = -1
|
86 |
+
gth_mask_imag[gth_mask_imag > 2] = 1
|
87 |
+
gth_mask_imag[gth_mask_imag < -2] = -1
|
88 |
+
|
89 |
+
amp_loss = F.mse_loss(gth_mask_real, mask_real)
|
90 |
+
phase_loss = F.mse_loss(gth_mask_imag, mask_imag)
|
91 |
+
|
92 |
+
loss = amp_loss + phase_loss
|
93 |
+
return loss
|
94 |
+
|
95 |
+
|
96 |
+
def main():
|
97 |
+
batch_size = 2
|
98 |
+
signal_length = 16000
|
99 |
+
estimated_signal = torch.randn(batch_size, signal_length)
|
100 |
+
target_signal = torch.randn(batch_size, signal_length)
|
101 |
+
|
102 |
+
loss_fn = CIRMLoss()
|
103 |
+
|
104 |
+
loss = loss_fn.forward(estimated_signal, target_signal)
|
105 |
+
print(f"loss: {loss.item()}")
|
106 |
+
|
107 |
+
return
|
108 |
+
|
109 |
+
|
110 |
+
if __name__ == "__main__":
|
111 |
+
main()
|
toolbox/torchaudio/losses/spectral.py
CHANGED
@@ -346,6 +346,76 @@ class MultiResolutionSTFTLoss(torch.nn.Module):
|
|
346 |
return loss
|
347 |
|
348 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
349 |
def main():
|
350 |
batch_size = 2
|
351 |
signal_length = 16000
|
@@ -354,7 +424,8 @@ def main():
|
|
354 |
|
355 |
# loss_fn = LSDLoss()
|
356 |
# loss_fn = ComplexSpectralLoss()
|
357 |
-
loss_fn = MultiResolutionSTFTLoss()
|
|
|
358 |
|
359 |
loss = loss_fn.forward(estimated_signal, target_signal)
|
360 |
print(f"loss: {loss.item()}")
|
|
|
346 |
return loss
|
347 |
|
348 |
|
349 |
+
class WeightedMagnitudePhaseLoss(nn.Module):
|
350 |
+
def __init__(self,
|
351 |
+
n_fft: int = 1024,
|
352 |
+
win_size: int = 600,
|
353 |
+
hop_size: int = 120,
|
354 |
+
center: bool = True,
|
355 |
+
reduction: str = "mean",
|
356 |
+
mag_weight: float = 0.9,
|
357 |
+
pha_weight: float = 0.3,
|
358 |
+
):
|
359 |
+
super(WeightedMagnitudePhaseLoss, self).__init__()
|
360 |
+
self.n_fft = n_fft
|
361 |
+
self.win_size = win_size
|
362 |
+
self.hop_size = hop_size
|
363 |
+
self.center = center
|
364 |
+
self.reduction = reduction
|
365 |
+
|
366 |
+
self.mag_weight = mag_weight
|
367 |
+
self.pha_weight = pha_weight
|
368 |
+
|
369 |
+
self.window = nn.Parameter(torch.hann_window(win_size), requires_grad=False)
|
370 |
+
|
371 |
+
def forward(self, denoise: torch.Tensor, clean: torch.Tensor):
|
372 |
+
"""
|
373 |
+
:param denoise:
|
374 |
+
:param clean:
|
375 |
+
:return:
|
376 |
+
"""
|
377 |
+
if denoise.shape != clean.shape:
|
378 |
+
raise AssertionError("Input signals must have the same shape")
|
379 |
+
|
380 |
+
# denoise_stft, clean_stft shape: [b, f, t]
|
381 |
+
denoise_stft = torch.stft(
|
382 |
+
denoise,
|
383 |
+
n_fft=self.n_fft,
|
384 |
+
win_length=self.win_size,
|
385 |
+
hop_length=self.hop_size,
|
386 |
+
window=self.window,
|
387 |
+
center=self.center,
|
388 |
+
pad_mode="reflect",
|
389 |
+
normalized=False,
|
390 |
+
return_complex=True
|
391 |
+
)
|
392 |
+
clean_stft = torch.stft(
|
393 |
+
clean,
|
394 |
+
n_fft=self.n_fft,
|
395 |
+
win_length=self.win_size,
|
396 |
+
hop_length=self.hop_size,
|
397 |
+
window=self.window,
|
398 |
+
center=self.center,
|
399 |
+
pad_mode="reflect",
|
400 |
+
normalized=False,
|
401 |
+
return_complex=True
|
402 |
+
)
|
403 |
+
|
404 |
+
denoise_stft_spec = torch.view_as_real(denoise_stft)
|
405 |
+
denoise_mag = torch.sqrt(denoise_stft_spec.pow(2).sum(-1) + 1e-9)
|
406 |
+
denoise_pha = torch.atan2(denoise_stft_spec[:, :, :, 1] + 1e-10, denoise_stft_spec[:, :, :, 0] + 1e-5)
|
407 |
+
|
408 |
+
clean_stft_spec = torch.view_as_real(clean_stft)
|
409 |
+
clean_mag = torch.sqrt(clean_stft_spec.pow(2).sum(-1) + 1e-9)
|
410 |
+
clean_pha = torch.atan2(clean_stft_spec[:, :, :, 1] + 1e-10, clean_stft_spec[:, :, :, 0] + 1e-5)
|
411 |
+
|
412 |
+
mag_loss = F.mse_loss(denoise_mag, clean_mag, reduction=self.reduction)
|
413 |
+
pha_loss = F.mse_loss(denoise_pha, clean_pha, reduction=self.reduction)
|
414 |
+
|
415 |
+
loss = self.mag_weight * mag_loss + self.pha_weight * pha_loss
|
416 |
+
return loss
|
417 |
+
|
418 |
+
|
419 |
def main():
|
420 |
batch_size = 2
|
421 |
signal_length = 16000
|
|
|
424 |
|
425 |
# loss_fn = LSDLoss()
|
426 |
# loss_fn = ComplexSpectralLoss()
|
427 |
+
# loss_fn = MultiResolutionSTFTLoss()
|
428 |
+
loss_fn = WeightedMagnitudePhaseLoss()
|
429 |
|
430 |
loss = loss_fn.forward(estimated_signal, target_signal)
|
431 |
print(f"loss: {loss.item()}")
|
toolbox/torchaudio/models/frcrn/complex_nn.py
ADDED
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
from typing import Union, Tuple
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
|
8 |
+
from toolbox.torchaudio.models.frcrn.uni_deep_fsmn import UniDeepFsmn
|
9 |
+
|
10 |
+
|
11 |
+
class ComplexUniDeepFsmn(nn.Module):
|
12 |
+
def __init__(self, input_dim: int, hidden_size: int, lorder: int = 20):
|
13 |
+
super(ComplexUniDeepFsmn, self).__init__()
|
14 |
+
|
15 |
+
self.fsmn_re_l1 = UniDeepFsmn(input_dim, hidden_size, lorder=lorder)
|
16 |
+
self.fsmn_im_l1 = UniDeepFsmn(input_dim, hidden_size, lorder=lorder)
|
17 |
+
self.fsmn_re_l2 = UniDeepFsmn(input_dim, hidden_size, lorder=lorder)
|
18 |
+
self.fsmn_im_l2 = UniDeepFsmn(input_dim, hidden_size, lorder=lorder)
|
19 |
+
|
20 |
+
def forward(self, x: torch.Tensor):
|
21 |
+
"""
|
22 |
+
:param x: torch.Tensor, shape: [b, c, h, t, 2]
|
23 |
+
:return: torch.Tensor, shape: [b, h, t, 2]
|
24 |
+
"""
|
25 |
+
b, c, h, t, d = x.size()
|
26 |
+
x = torch.reshape(x, shape=(b, c * h, t, d))
|
27 |
+
# x shape: [b, h', t, 2]
|
28 |
+
x = torch.transpose(x, dim0=1, dim1=2)
|
29 |
+
# x shape: [b, t, h', 2]
|
30 |
+
|
31 |
+
real_l1 = self.fsmn_re_l1(x[..., 0]) - self.fsmn_im_l1(x[..., 1])
|
32 |
+
imaginary_l1 = self.fsmn_re_l1(x[..., 1]) + self.fsmn_im_l1(x[..., 0])
|
33 |
+
# real, image shape: [b, t, h']
|
34 |
+
|
35 |
+
real = self.fsmn_re_l2(real_l1) - self.fsmn_im_l2(imaginary_l1)
|
36 |
+
imaginary = self.fsmn_re_l2(imaginary_l1) + self.fsmn_im_l2(real_l1)
|
37 |
+
# real, image shape: [b, t, h']
|
38 |
+
|
39 |
+
output = torch.stack(tensors=(real, imaginary), dim=-1)
|
40 |
+
# output shape: [b, t, h', 2]
|
41 |
+
output = torch.transpose(output, dim0=1, dim1=2)
|
42 |
+
# output shape: [b, h', t, 2]
|
43 |
+
output = torch.reshape(output, shape=(b, c, h, t, d))
|
44 |
+
# output shape: [b, c, h, t, 2]
|
45 |
+
return output
|
46 |
+
|
47 |
+
|
48 |
+
class ComplexUniDeepFsmnL1(nn.Module):
|
49 |
+
def __init__(self, input_dim: int, hidden_size: int, lorder: int = 20):
|
50 |
+
super(ComplexUniDeepFsmnL1, self).__init__()
|
51 |
+
self.fsmn_re_l1 = UniDeepFsmn(input_dim, hidden_size, lorder=lorder)
|
52 |
+
self.fsmn_im_l1 = UniDeepFsmn(input_dim, hidden_size, lorder=lorder)
|
53 |
+
|
54 |
+
def forward(self, x: torch.Tensor):
|
55 |
+
b, c, h, t, d = x.size()
|
56 |
+
x = torch.transpose(x, dim0=1, dim1=3)
|
57 |
+
# x shape: [b, t, h, c, 2]
|
58 |
+
x = torch.reshape(x, shape=(b * t, h, c, d))
|
59 |
+
# x shape: [b*t, h, c, 2]
|
60 |
+
|
61 |
+
real = self.fsmn_re_l1(x[..., 0]) - self.fsmn_im_l1(x[..., 1])
|
62 |
+
imaginary = self.fsmn_re_l1(x[..., 1]) + self.fsmn_im_l1(x[..., 0])
|
63 |
+
# real, image shape: [b*t, h, c]
|
64 |
+
|
65 |
+
output = torch.stack(tensors=(real, imaginary), dim=-1)
|
66 |
+
# output shape: [b*t, h, c, 2]
|
67 |
+
output = torch.reshape(output, shape=(b, t, h, c, d))
|
68 |
+
# output shape: [b, t, h, c, 2]
|
69 |
+
output = torch.transpose(output, dim0=1, dim1=3)
|
70 |
+
# output shape: [b, c, h, t, 2]
|
71 |
+
return output
|
72 |
+
|
73 |
+
|
74 |
+
class ComplexConv2d(nn.Module):
|
75 |
+
# https://github.com/litcoderr/ComplexCNN/blob/master/complexcnn/modules.py
|
76 |
+
def __init__(self,
|
77 |
+
in_channels: int,
|
78 |
+
out_channels: int,
|
79 |
+
kernel_size: Union[int, Tuple[int, int]],
|
80 |
+
stride: Union[int, Tuple[int, int]] = 1,
|
81 |
+
padding: Union[int, Tuple[int, int]] = 0,
|
82 |
+
dilation: Union[int, Tuple[int, int]] = 1,
|
83 |
+
groups: int = 1,
|
84 |
+
bias: bool = True,
|
85 |
+
**kwargs
|
86 |
+
):
|
87 |
+
super().__init__()
|
88 |
+
|
89 |
+
# Model components
|
90 |
+
self.conv_re = nn.Conv2d(
|
91 |
+
in_channels,
|
92 |
+
out_channels,
|
93 |
+
kernel_size,
|
94 |
+
stride=stride,
|
95 |
+
padding=padding,
|
96 |
+
dilation=dilation,
|
97 |
+
groups=groups,
|
98 |
+
bias=bias,
|
99 |
+
**kwargs
|
100 |
+
)
|
101 |
+
self.conv_im = nn.Conv2d(
|
102 |
+
in_channels,
|
103 |
+
out_channels,
|
104 |
+
kernel_size,
|
105 |
+
stride=stride,
|
106 |
+
padding=padding,
|
107 |
+
dilation=dilation,
|
108 |
+
groups=groups,
|
109 |
+
bias=bias,
|
110 |
+
**kwargs
|
111 |
+
)
|
112 |
+
|
113 |
+
def forward(self, x: torch.Tensor):
|
114 |
+
"""
|
115 |
+
|
116 |
+
:param x: torch.Tensor, shape: [b, c, h, w, 2]
|
117 |
+
:return:
|
118 |
+
"""
|
119 |
+
real = self.conv_re(x[..., 0]) - self.conv_im(x[..., 1])
|
120 |
+
imaginary = self.conv_re(x[..., 1]) + self.conv_im(x[..., 0])
|
121 |
+
|
122 |
+
output = torch.stack((real, imaginary), dim=-1)
|
123 |
+
return output
|
124 |
+
|
125 |
+
|
126 |
+
class ComplexConvTranspose2d(nn.Module):
|
127 |
+
def __init__(self,
|
128 |
+
in_channels: int,
|
129 |
+
out_channels: int,
|
130 |
+
kernel_size: Union[int, Tuple[int, int]],
|
131 |
+
stride: Union[int, Tuple[int, int]] = 1,
|
132 |
+
padding: Union[int, Tuple[int, int]] = 0,
|
133 |
+
output_padding: Union[int, Tuple[int, int]] = 0,
|
134 |
+
dilation: Union[int, Tuple[int, int]] = 1,
|
135 |
+
groups: int = 1,
|
136 |
+
bias=True,
|
137 |
+
**kwargs
|
138 |
+
):
|
139 |
+
super().__init__()
|
140 |
+
|
141 |
+
# Model components
|
142 |
+
self.tconv_re = nn.ConvTranspose2d(
|
143 |
+
in_channels,
|
144 |
+
out_channels,
|
145 |
+
kernel_size=kernel_size,
|
146 |
+
stride=stride,
|
147 |
+
padding=padding,
|
148 |
+
output_padding=output_padding,
|
149 |
+
groups=groups,
|
150 |
+
bias=bias,
|
151 |
+
dilation=dilation,
|
152 |
+
**kwargs
|
153 |
+
)
|
154 |
+
self.tconv_im = nn.ConvTranspose2d(
|
155 |
+
in_channels,
|
156 |
+
out_channels,
|
157 |
+
kernel_size=kernel_size,
|
158 |
+
stride=stride,
|
159 |
+
padding=padding,
|
160 |
+
output_padding=output_padding,
|
161 |
+
groups=groups,
|
162 |
+
bias=bias,
|
163 |
+
dilation=dilation,
|
164 |
+
**kwargs
|
165 |
+
)
|
166 |
+
|
167 |
+
def forward(self, x: torch.Tensor):
|
168 |
+
"""
|
169 |
+
:param x: torch.Tensor, shape: [b, c, h, w, 2]
|
170 |
+
:return:
|
171 |
+
"""
|
172 |
+
real = self.tconv_re(x[..., 0]) - self.tconv_im(x[..., 1])
|
173 |
+
imaginary = self.tconv_re(x[..., 1]) + self.tconv_im(x[..., 0])
|
174 |
+
|
175 |
+
output = torch.stack((real, imaginary), dim=-1)
|
176 |
+
return output
|
177 |
+
|
178 |
+
|
179 |
+
class ComplexBatchNorm2d(nn.Module):
|
180 |
+
def __init__(self,
|
181 |
+
num_features: int,
|
182 |
+
eps: float = 1e-5,
|
183 |
+
momentum: float = 0.1,
|
184 |
+
affine: bool = True,
|
185 |
+
track_running_stats: bool = True,
|
186 |
+
**kwargs
|
187 |
+
):
|
188 |
+
super().__init__()
|
189 |
+
self.bn_re = nn.BatchNorm2d(
|
190 |
+
num_features=num_features,
|
191 |
+
momentum=momentum,
|
192 |
+
affine=affine,
|
193 |
+
eps=eps,
|
194 |
+
track_running_stats=track_running_stats,
|
195 |
+
**kwargs
|
196 |
+
)
|
197 |
+
self.bn_im = nn.BatchNorm2d(
|
198 |
+
num_features=num_features,
|
199 |
+
momentum=momentum,
|
200 |
+
affine=affine,
|
201 |
+
eps=eps,
|
202 |
+
track_running_stats=track_running_stats,
|
203 |
+
**kwargs
|
204 |
+
)
|
205 |
+
|
206 |
+
def forward(self, x: torch.Tensor):
|
207 |
+
real = self.bn_re(x[..., 0])
|
208 |
+
imag = self.bn_im(x[..., 1])
|
209 |
+
|
210 |
+
output = torch.stack((real, imag), dim=-1)
|
211 |
+
return output
|
212 |
+
|
213 |
+
|
214 |
+
def main():
|
215 |
+
# x = torch.rand(size=(1, 1, 32, 200, 2))
|
216 |
+
# fsmn = ComplexUniDeepFsmn(
|
217 |
+
# input_dim=32,
|
218 |
+
# hidden_size=64,
|
219 |
+
# )
|
220 |
+
# result = fsmn.forward(x)
|
221 |
+
# print(result.shape)
|
222 |
+
|
223 |
+
# x = torch.rand(size=(1, 32, 32, 200, 2))
|
224 |
+
# fsmn = ComplexUniDeepFsmnL1(
|
225 |
+
# input_dim=32,
|
226 |
+
# hidden_size=64,
|
227 |
+
# )
|
228 |
+
# result = fsmn.forward(x)
|
229 |
+
# print(result.shape)
|
230 |
+
|
231 |
+
# x = torch.rand(size=(1, 32, 200, 200, 2))
|
232 |
+
x = torch.rand(size=(1, 1, 320, 200, 2))
|
233 |
+
conv2d = ComplexConv2d(
|
234 |
+
in_channels=1,
|
235 |
+
out_channels=128,
|
236 |
+
kernel_size=(5, 2),
|
237 |
+
stride=(2, 1),
|
238 |
+
padding=(0, 1),
|
239 |
+
)
|
240 |
+
result = conv2d.forward(x)
|
241 |
+
print(result.shape)
|
242 |
+
|
243 |
+
# x = torch.rand(size=(1, 32, 200, 200, 2))
|
244 |
+
# x = torch.rand(size=(1, 64, 15, 2000, 2))
|
245 |
+
# tconv = ComplexConvTranspose2d(
|
246 |
+
# in_channels=64,
|
247 |
+
# out_channels=32,
|
248 |
+
# kernel_size=(3, 3),
|
249 |
+
# stride=(2, 1),
|
250 |
+
# padding=(0, 1),
|
251 |
+
# )
|
252 |
+
# result = tconv.forward(x)
|
253 |
+
# print(result.shape)
|
254 |
+
return
|
255 |
+
|
256 |
+
|
257 |
+
if __name__ == "__main__":
|
258 |
+
main()
|
toolbox/torchaudio/models/frcrn/configuration_frcrn.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
"""
|
4 |
+
https://huggingface.co/spaces/alibabasglab/ClearVoice/blob/main/checkpoints/FRCRN_SE_16K/config.yaml
|
5 |
+
https://huggingface.co/spaces/alibabasglab/ClearVoice/blob/main/config/inference/FRCRN_SE_16K.yaml
|
6 |
+
|
7 |
+
"""
|
8 |
+
from toolbox.torchaudio.configuration_utils import PretrainedConfig
|
9 |
+
|
10 |
+
|
11 |
+
class FRCRNConfig(PretrainedConfig):
|
12 |
+
def __init__(self,
|
13 |
+
num_gpus: int = -1,
|
14 |
+
|
15 |
+
lr: float = 0.001,
|
16 |
+
max_epochs: int = 100,
|
17 |
+
weight_decay: float = 0.00001,
|
18 |
+
clip_grad_norm: float = 10.,
|
19 |
+
seed: int = 1234,
|
20 |
+
|
21 |
+
sample_rate: int = 8000,
|
22 |
+
segment_size: int = 32000,
|
23 |
+
nfft: int = 512,
|
24 |
+
win_size: int = 512,
|
25 |
+
hop_size: int = 256,
|
26 |
+
win_type: str = "hann",
|
27 |
+
|
28 |
+
use_complex_networks: bool = True,
|
29 |
+
model_depth: int = 20,
|
30 |
+
model_complexity: int = 45,
|
31 |
+
|
32 |
+
num_workers: int = 4,
|
33 |
+
batch_size: int = 4,
|
34 |
+
**kwargs
|
35 |
+
):
|
36 |
+
super(FRCRNConfig, self).__init__(**kwargs)
|
37 |
+
self.num_gpus = num_gpus
|
38 |
+
|
39 |
+
self.lr = lr
|
40 |
+
self.max_epochs = max_epochs
|
41 |
+
self.weight_decay = weight_decay
|
42 |
+
self.clip_grad_norm = clip_grad_norm
|
43 |
+
self.seed = seed
|
44 |
+
|
45 |
+
self.sample_rate = sample_rate
|
46 |
+
self.segment_size = segment_size
|
47 |
+
self.nfft = nfft
|
48 |
+
self.win_size = win_size
|
49 |
+
self.hop_size = hop_size
|
50 |
+
self.win_type = win_type
|
51 |
+
|
52 |
+
self.use_complex_networks = use_complex_networks
|
53 |
+
self.model_depth = model_depth
|
54 |
+
self.model_complexity = model_complexity
|
55 |
+
|
56 |
+
self.num_workers = num_workers
|
57 |
+
self.batch_size = batch_size
|
58 |
+
|
59 |
+
|
60 |
+
def main():
|
61 |
+
config = FRCRNConfig()
|
62 |
+
config.to_yaml_file("config.yaml")
|
63 |
+
return
|
64 |
+
|
65 |
+
|
66 |
+
if __name__ == "__main__":
|
67 |
+
main()
|
toolbox/torchaudio/models/frcrn/conv_stft.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
"""
|
4 |
+
https://github.com/modelscope/modelscope/blob/master/modelscope/models/audio/ans/conv_stft.py
|
5 |
+
"""
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
from scipy.signal import get_window
|
11 |
+
|
12 |
+
|
13 |
+
def init_kernels(nfft: int, win_size: int, hop_size: int, win_type: str = None, inverse=False):
|
14 |
+
if win_type == "None" or win_type is None:
|
15 |
+
window = np.ones(win_size)
|
16 |
+
else:
|
17 |
+
window = get_window(win_type, win_size, fftbins=True)**0.5
|
18 |
+
|
19 |
+
fourier_basis = np.fft.rfft(np.eye(nfft))[:win_size]
|
20 |
+
real_kernel = np.real(fourier_basis)
|
21 |
+
image_kernel = np.imag(fourier_basis)
|
22 |
+
kernel = np.concatenate([real_kernel, image_kernel], 1).T
|
23 |
+
|
24 |
+
if inverse:
|
25 |
+
kernel = np.linalg.pinv(kernel).T
|
26 |
+
|
27 |
+
kernel = kernel * window
|
28 |
+
kernel = kernel[:, None, :]
|
29 |
+
result = (
|
30 |
+
torch.from_numpy(kernel.astype(np.float32)),
|
31 |
+
torch.from_numpy(window[None, :, None].astype(np.float32))
|
32 |
+
)
|
33 |
+
return result
|
34 |
+
|
35 |
+
|
36 |
+
class ConvSTFT(nn.Module):
|
37 |
+
|
38 |
+
def __init__(self,
|
39 |
+
nfft: int,
|
40 |
+
win_size: int,
|
41 |
+
hop_size: int,
|
42 |
+
win_type: str = "hamming",
|
43 |
+
feature_type: str = "real",
|
44 |
+
requires_grad: bool = False):
|
45 |
+
super(ConvSTFT, self).__init__()
|
46 |
+
|
47 |
+
if nfft is None:
|
48 |
+
self.nfft = int(2**np.ceil(np.log2(win_size)))
|
49 |
+
else:
|
50 |
+
self.nfft = nfft
|
51 |
+
|
52 |
+
kernel, _ = init_kernels(self.nfft, win_size, hop_size, win_type)
|
53 |
+
self.weight = nn.Parameter(kernel, requires_grad=requires_grad)
|
54 |
+
|
55 |
+
self.win_size = win_size
|
56 |
+
self.hop_size = hop_size
|
57 |
+
|
58 |
+
self.stride = hop_size
|
59 |
+
self.dim = self.nfft
|
60 |
+
self.feature_type = feature_type
|
61 |
+
|
62 |
+
def forward(self, inputs: torch.Tensor):
|
63 |
+
if inputs.dim() == 2:
|
64 |
+
inputs = torch.unsqueeze(inputs, 1)
|
65 |
+
|
66 |
+
outputs = F.conv1d(inputs, self.weight, stride=self.stride)
|
67 |
+
|
68 |
+
if self.feature_type == "complex":
|
69 |
+
return outputs
|
70 |
+
else:
|
71 |
+
dim = self.dim // 2 + 1
|
72 |
+
real = outputs[:, :dim, :]
|
73 |
+
imag = outputs[:, dim:, :]
|
74 |
+
mags = torch.sqrt(real**2 + imag**2)
|
75 |
+
phase = torch.atan2(imag, real)
|
76 |
+
return mags, phase
|
77 |
+
|
78 |
+
|
79 |
+
class ConviSTFT(nn.Module):
|
80 |
+
|
81 |
+
def __init__(self,
|
82 |
+
win_size: int,
|
83 |
+
hop_size: int,
|
84 |
+
nfft: int = None,
|
85 |
+
win_type: str = "hamming",
|
86 |
+
feature_type: str = "real",
|
87 |
+
requires_grad: bool = False):
|
88 |
+
super(ConviSTFT, self).__init__()
|
89 |
+
if nfft is None:
|
90 |
+
self.nfft = int(2**np.ceil(np.log2(win_size)))
|
91 |
+
else:
|
92 |
+
self.nfft = nfft
|
93 |
+
|
94 |
+
kernel, window = init_kernels(self.nfft, win_size, hop_size, win_type, inverse=True)
|
95 |
+
self.weight = nn.Parameter(kernel, requires_grad=requires_grad)
|
96 |
+
|
97 |
+
self.win_size = win_size
|
98 |
+
self.hop_size = hop_size
|
99 |
+
self.win_type = win_type
|
100 |
+
|
101 |
+
self.stride = hop_size
|
102 |
+
self.dim = self.nfft
|
103 |
+
self.feature_type = feature_type
|
104 |
+
|
105 |
+
self.register_buffer("window", window)
|
106 |
+
self.register_buffer("enframe", torch.eye(win_size)[:, None, :])
|
107 |
+
|
108 |
+
def forward(self,
|
109 |
+
inputs: torch.Tensor,
|
110 |
+
phase: torch.Tensor = None):
|
111 |
+
"""
|
112 |
+
:param inputs: torch.Tensor, shape: [b, n+2, t] (complex spec) or [b, n//2+1, t] (mags)
|
113 |
+
:param phase: torch.Tensor, shape: [b, n//2+1, t]
|
114 |
+
:return:
|
115 |
+
"""
|
116 |
+
if phase is not None:
|
117 |
+
real = inputs * torch.cos(phase)
|
118 |
+
imag = inputs * torch.sin(phase)
|
119 |
+
inputs = torch.cat([real, imag], 1)
|
120 |
+
outputs = F.conv_transpose1d(inputs, self.weight, stride=self.stride)
|
121 |
+
|
122 |
+
# this is from torch-stft: https://github.com/pseeth/torch-stft
|
123 |
+
t = self.window.repeat(1, 1, inputs.size(-1))**2
|
124 |
+
coff = F.conv_transpose1d(t, self.enframe, stride=self.stride)
|
125 |
+
outputs = outputs / (coff + 1e-8)
|
126 |
+
return outputs
|
127 |
+
|
128 |
+
|
129 |
+
def main():
|
130 |
+
stft = ConvSTFT(win_size=512, hop_size=200, feature_type="complex")
|
131 |
+
istft = ConviSTFT(win_size=512, hop_size=200, feature_type="complex")
|
132 |
+
|
133 |
+
mixture = torch.rand(size=(1, 8000*40), dtype=torch.float32)
|
134 |
+
|
135 |
+
spec = stft.forward(mixture)
|
136 |
+
# shape: [batch_size, freq_bins, time_steps]
|
137 |
+
print(spec.shape)
|
138 |
+
|
139 |
+
waveform = istft.forward(spec)
|
140 |
+
# shape: [batch_size, channels, num_samples]
|
141 |
+
print(waveform.shape)
|
142 |
+
|
143 |
+
return
|
144 |
+
|
145 |
+
|
146 |
+
if __name__ == "__main__":
|
147 |
+
main()
|
toolbox/torchaudio/models/frcrn/modeling_frcrn.py
CHANGED
@@ -2,9 +2,324 @@
|
|
2 |
# -*- coding: utf-8 -*-
|
3 |
"""
|
4 |
https://arxiv.org/abs/2206.07293
|
|
|
|
|
|
|
|
|
5 |
"""
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
|
9 |
if __name__ == "__main__":
|
10 |
-
|
|
|
2 |
# -*- coding: utf-8 -*-
|
3 |
"""
|
4 |
https://arxiv.org/abs/2206.07293
|
5 |
+
|
6 |
+
https://github.com/modelscope/modelscope/blob/master/modelscope/models/audio/ans/frcrn.py
|
7 |
+
https://huggingface.co/spaces/alibabasglab/ClearVoice/blob/main/models/frcrn_se/frcrn.py
|
8 |
+
|
9 |
"""
|
10 |
+
import os
|
11 |
+
from typing import Optional, Union
|
12 |
+
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
from torch.nn import functional as F
|
16 |
+
|
17 |
+
from toolbox.torchaudio.configuration_utils import CONFIG_FILE
|
18 |
+
from toolbox.torchaudio.models.frcrn.configuration_frcrn import FRCRNConfig
|
19 |
+
from toolbox.torchaudio.models.frcrn.conv_stft import ConviSTFT, ConvSTFT
|
20 |
+
from toolbox.torchaudio.models.frcrn.unet import UNet
|
21 |
+
|
22 |
+
|
23 |
+
class FRCRN(nn.Module):
|
24 |
+
""" Frequency Recurrent CRN """
|
25 |
+
|
26 |
+
def __init__(self,
|
27 |
+
use_complex_networks: bool = True,
|
28 |
+
model_complexity: int = 45,
|
29 |
+
model_depth: int = 14,
|
30 |
+
padding_mode: str = "zeros",
|
31 |
+
nfft: int = 640,
|
32 |
+
win_size: int = 640,
|
33 |
+
hop_size: int = 320,
|
34 |
+
win_type: str = "hann",
|
35 |
+
):
|
36 |
+
"""
|
37 |
+
:param use_complex_networks: bool, Whether to use complex networks.
|
38 |
+
:param model_complexity: int, define the model complexity with the number of layers
|
39 |
+
:param model_depth: int, Only two options are available : 10, 20
|
40 |
+
:param padding_mode: str, Encoder's convolution filter. 'zeros', 'reflect'
|
41 |
+
:param nfft: int, number of Short Time Fourier Transform (STFT) points
|
42 |
+
:param win_size: int, length of window used for defining one frame of sample points
|
43 |
+
:param hop_size: int, length of window shifting (equivalent to hop_size)
|
44 |
+
:param win_type: str, windowing type used in STFT, eg. 'hanning', 'hamming'
|
45 |
+
"""
|
46 |
+
super().__init__()
|
47 |
+
self.freq_bins = nfft // 2 + 1
|
48 |
+
|
49 |
+
self.nfft = nfft
|
50 |
+
self.win_size = win_size
|
51 |
+
self.hop_size = hop_size
|
52 |
+
self.win_type = win_type
|
53 |
+
|
54 |
+
self.stft = ConvSTFT(
|
55 |
+
nfft=self.nfft,
|
56 |
+
win_size=self.win_size,
|
57 |
+
hop_size=self.hop_size,
|
58 |
+
feature_type="complex",
|
59 |
+
requires_grad=False
|
60 |
+
)
|
61 |
+
self.istft = ConviSTFT(
|
62 |
+
nfft=self.nfft,
|
63 |
+
win_size=self.win_size,
|
64 |
+
hop_size=self.hop_size,
|
65 |
+
win_type=self.win_type,
|
66 |
+
feature_type="complex",
|
67 |
+
requires_grad=False
|
68 |
+
)
|
69 |
+
self.unet = UNet(
|
70 |
+
in_channels=1,
|
71 |
+
use_complex_networks=use_complex_networks,
|
72 |
+
model_complexity=model_complexity,
|
73 |
+
model_depth=model_depth,
|
74 |
+
padding_mode=padding_mode
|
75 |
+
)
|
76 |
+
self.unet2 = UNet(
|
77 |
+
in_channels=1,
|
78 |
+
use_complex_networks=use_complex_networks,
|
79 |
+
model_complexity=model_complexity,
|
80 |
+
model_depth=model_depth,
|
81 |
+
padding_mode=padding_mode
|
82 |
+
)
|
83 |
+
|
84 |
+
def forward(self, noisy: torch.Tensor):
|
85 |
+
"""
|
86 |
+
:param noisy: torch.Tensor, shape: [b, n_samples] or [b, c, n_samples]
|
87 |
+
:return:
|
88 |
+
"""
|
89 |
+
if noisy.dim() == 2:
|
90 |
+
noisy = torch.unsqueeze(noisy, dim=1)
|
91 |
+
_, _, n_samples = noisy.shape
|
92 |
+
remainder = (n_samples - self.win_size) % self.hop_size
|
93 |
+
if remainder > 0:
|
94 |
+
n_samples_pad = self.hop_size - remainder
|
95 |
+
noisy = F.pad(noisy, pad=(0, n_samples_pad), mode="constant", value=0)
|
96 |
+
|
97 |
+
# [batch_size, freq_bins * 2, time_steps]
|
98 |
+
cmp_spec = self.stft.forward(noisy)
|
99 |
+
# [batch_size, 1, freq_bins * 2, time_steps]
|
100 |
+
cmp_spec = torch.unsqueeze(cmp_spec, 1)
|
101 |
+
|
102 |
+
# [batch_size, 2, freq_bins, time_steps]
|
103 |
+
cmp_spec = torch.cat([
|
104 |
+
cmp_spec[:, :, :self.freq_bins, :],
|
105 |
+
cmp_spec[:, :, self.freq_bins:, :],
|
106 |
+
], dim=1)
|
107 |
+
|
108 |
+
# [batch_size, 2, freq_bins, time_steps, 1]
|
109 |
+
cmp_spec = torch.unsqueeze(cmp_spec, dim=4)
|
110 |
+
|
111 |
+
cmp_spec = torch.transpose(cmp_spec, 1, 4)
|
112 |
+
# [batch_size, 1, freq_bins, time_steps, 2]
|
113 |
+
|
114 |
+
unet1_out = self.unet.forward(cmp_spec)
|
115 |
+
cmp_mask1 = torch.tanh(unet1_out)
|
116 |
+
unet2_out = self.unet2.forward(unet1_out)
|
117 |
+
cmp_mask2 = torch.tanh(unet2_out)
|
118 |
+
|
119 |
+
# est_spec, est_wav, est_mask = self.apply_mask(cmp_spec, cmp_mask1)
|
120 |
+
|
121 |
+
cmp_mask2 = cmp_mask2 + cmp_mask1
|
122 |
+
est_spec, est_wav, est_mask = self.apply_mask(cmp_spec, cmp_mask2)
|
123 |
+
# est_wav shape: [b, n_samples]
|
124 |
+
|
125 |
+
est_wav = est_wav[:, :n_samples]
|
126 |
+
return est_spec, est_wav, est_mask
|
127 |
+
|
128 |
+
def apply_mask(self,
|
129 |
+
cmp_spec: torch.Tensor,
|
130 |
+
cmp_mask: torch.Tensor,
|
131 |
+
):
|
132 |
+
"""
|
133 |
+
:param cmp_spec: torch.Tensor, shape: [batch_size, 1, freq_bins, time_steps, 2]
|
134 |
+
:param cmp_mask: torch.Tensor, shape: [batch_size, 1, freq_bins, time_steps, 2]
|
135 |
+
:return:
|
136 |
+
"""
|
137 |
+
est_spec = torch.cat(
|
138 |
+
tensors=[
|
139 |
+
cmp_spec[..., 0] * cmp_mask[..., 0] - cmp_spec[..., 1] * cmp_mask[..., 1],
|
140 |
+
cmp_spec[..., 0] * cmp_mask[..., 1] + cmp_spec[..., 1] * cmp_mask[..., 0]
|
141 |
+
], dim=1
|
142 |
+
)
|
143 |
+
# est_spec shape: [b, 2, n//2+1, t]
|
144 |
+
est_spec = torch.cat(tensors=[est_spec[:, 0, :, :], est_spec[:, 1, :, :]], dim=1)
|
145 |
+
# est_spec shape: [b, n+2, t]
|
146 |
+
|
147 |
+
# cmp_mask shape: [b, 1, n//2+1, t, 2]
|
148 |
+
cmp_mask = torch.squeeze(cmp_mask, dim=1)
|
149 |
+
# cmp_mask shape: [b, n//2+1, t, 2]
|
150 |
+
cmp_mask = torch.cat(tensors=[cmp_mask[:, :, :, 0], cmp_mask[:, :, :, 1]], dim=1)
|
151 |
+
# cmp_mask shape: [b, n+2, t]
|
152 |
+
|
153 |
+
# est_spec shape: [b, n+2, t]
|
154 |
+
est_wav = self.istft(est_spec)
|
155 |
+
# est_wav shape: [b, 1, n_samples]
|
156 |
+
est_wav = torch.squeeze(est_wav, 1)
|
157 |
+
# est_wav shape: [b, n_samples]
|
158 |
+
return est_spec, est_wav, cmp_mask
|
159 |
+
|
160 |
+
def get_params(self, weight_decay=0.0):
|
161 |
+
"""
|
162 |
+
为可训练参数配置 weight_decay (权重衰减) 的作用是实现 L2 正则化。
|
163 |
+
1. 防止过拟合: 通过向损失函数添加参数的 L2 范数 (平方和) 作为惩罚项, weight_decay 会限制模型权重的大小.
|
164 |
+
这使得模型倾向于学习更小的权重值, 降低对训练数据的过度敏感, 从而提高泛化能力.
|
165 |
+
2. 控制模型复杂度: 权重衰减直接作用于优化过程, 在梯度更新时对权重进行衰减,
|
166 |
+
公式: weight = weight - lr * (gradient + weight_decay * weight).
|
167 |
+
这相当于在梯度下降中额外引入了一个与当前权重值成正比的衰减力, 抑制权重快速增长.
|
168 |
+
3. 与优化器的具体实现相关
|
169 |
+
在 SGD 等传统优化器中, weight_decay 直接等价于 L2 正则化.
|
170 |
+
在 Adam 优化器中, 权重衰减的实现与参数更新耦合, 可能因学习率调整而效果减弱.
|
171 |
+
在 AdamW 优化器改进了这一点, 将权重衰减与学习率解耦, 使其更符合 L2 正则化的理论效果.
|
172 |
+
|
173 |
+
注意:
|
174 |
+
值过大会导致欠拟合, 过小则正则化效果弱, 常用范围是 1e-4到 1e-2.
|
175 |
+
某些场景 (如 BatchNorm 层) 可能需要通过参数分组对不同层设置不同的 weight_decay.
|
176 |
+
:param weight_decay:
|
177 |
+
:return:
|
178 |
+
"""
|
179 |
+
weights, biases = [], []
|
180 |
+
for name, param in self.named_parameters():
|
181 |
+
if "bias" in name:
|
182 |
+
biases += [param]
|
183 |
+
else:
|
184 |
+
weights += [param]
|
185 |
+
|
186 |
+
params = [{
|
187 |
+
'params': weights,
|
188 |
+
'weight_decay': weight_decay,
|
189 |
+
}, {
|
190 |
+
'params': biases,
|
191 |
+
'weight_decay': 0.0,
|
192 |
+
}]
|
193 |
+
return params
|
194 |
+
|
195 |
+
def mag_pha_loss_fn(self, est_mask: torch.Tensor, clean: torch.Tensor, noisy: torch.Tensor):
|
196 |
+
"""
|
197 |
+
|
198 |
+
:param est_mask: torch.Tensor, shape: [b, n+2, t]
|
199 |
+
:param clean:
|
200 |
+
:param noisy:
|
201 |
+
:return:
|
202 |
+
"""
|
203 |
+
clean_stft = self.stft(clean)
|
204 |
+
clean_re = clean_stft[:, :self.freq_bins, :]
|
205 |
+
clean_im = clean_stft[:, self.freq_bins:, :]
|
206 |
+
|
207 |
+
noisy_stft = self.stft(noisy)
|
208 |
+
noisy_re = noisy_stft[:, :self.freq_bins, :]
|
209 |
+
noisy_im = noisy_stft[:, self.freq_bins:, :]
|
210 |
+
|
211 |
+
noisy_power = noisy_re ** 2 + noisy_im ** 2
|
212 |
+
|
213 |
+
sr = clean_re
|
214 |
+
yr = noisy_re
|
215 |
+
si = clean_im
|
216 |
+
yi = noisy_im
|
217 |
+
y_pow = noisy_power
|
218 |
+
# (Sr * Yr + Si * Yi) / (Y_pow + 1e-8)
|
219 |
+
gth_mask_re = (sr * yr + si * yi) / (y_pow + self.eps)
|
220 |
+
# (Si * Yr - Sr * Yi) / (Y_pow + 1e-8)
|
221 |
+
gth_mask_im = (sr * yr - si * yi) / (y_pow + self.eps)
|
222 |
+
|
223 |
+
gth_mask_re[gth_mask_re > 2] = 1
|
224 |
+
gth_mask_re[gth_mask_re < -2] = -1
|
225 |
+
gth_mask_im[gth_mask_im > 2] = 1
|
226 |
+
gth_mask_im[gth_mask_im < -2] = -1
|
227 |
+
|
228 |
+
mask_re = est_mask[:, :self.freq_bins, :]
|
229 |
+
mask_im = est_mask[:, self.freq_bins:, :]
|
230 |
+
|
231 |
+
amp_loss = F.mse_loss(gth_mask_re, mask_re)
|
232 |
+
phase_loss = F.mse_loss(gth_mask_im, mask_im)
|
233 |
+
|
234 |
+
return amp_loss, phase_loss
|
235 |
+
|
236 |
+
|
237 |
+
MODEL_FILE = "model.pt"
|
238 |
+
|
239 |
+
|
240 |
+
class FRCRNPretrainedModel(FRCRN):
|
241 |
+
def __init__(self,
|
242 |
+
config: FRCRNConfig,
|
243 |
+
):
|
244 |
+
super(FRCRNPretrainedModel, self).__init__(
|
245 |
+
use_complex_networks=config.use_complex_networks,
|
246 |
+
model_complexity=config.model_complexity,
|
247 |
+
model_depth=config.model_depth,
|
248 |
+
nfft=config.nfft,
|
249 |
+
win_size=config.win_size,
|
250 |
+
hop_size=config.hop_size,
|
251 |
+
win_type=config.win_type,
|
252 |
+
)
|
253 |
+
self.config = config
|
254 |
+
|
255 |
+
@classmethod
|
256 |
+
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
|
257 |
+
config = FRCRNConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
|
258 |
+
|
259 |
+
model = cls(config)
|
260 |
+
|
261 |
+
if os.path.isdir(pretrained_model_name_or_path):
|
262 |
+
ckpt_file = os.path.join(pretrained_model_name_or_path, MODEL_FILE)
|
263 |
+
else:
|
264 |
+
ckpt_file = pretrained_model_name_or_path
|
265 |
+
|
266 |
+
with open(ckpt_file, "rb") as f:
|
267 |
+
state_dict = torch.load(f, map_location="cpu", weights_only=True)
|
268 |
+
model.load_state_dict(state_dict, strict=True)
|
269 |
+
return model
|
270 |
+
|
271 |
+
def save_pretrained(self,
|
272 |
+
save_directory: Union[str, os.PathLike],
|
273 |
+
state_dict: Optional[dict] = None,
|
274 |
+
):
|
275 |
+
|
276 |
+
model = self
|
277 |
+
|
278 |
+
if state_dict is None:
|
279 |
+
state_dict = model.state_dict()
|
280 |
+
|
281 |
+
os.makedirs(save_directory, exist_ok=True)
|
282 |
+
|
283 |
+
# save state dict
|
284 |
+
model_file = os.path.join(save_directory, MODEL_FILE)
|
285 |
+
torch.save(state_dict, model_file)
|
286 |
+
|
287 |
+
# save config
|
288 |
+
config_file = os.path.join(save_directory, CONFIG_FILE)
|
289 |
+
self.config.to_yaml_file(config_file)
|
290 |
+
return save_directory
|
291 |
+
|
292 |
+
|
293 |
+
def main():
|
294 |
+
# model = FRCRN(
|
295 |
+
# use_complex_networks=True,
|
296 |
+
# model_complexity=45,
|
297 |
+
# model_depth=14,
|
298 |
+
# padding_mode="zeros",
|
299 |
+
# nfft=512,
|
300 |
+
# win_size=400,
|
301 |
+
# hop_size=200,
|
302 |
+
# win_type="hann",
|
303 |
+
# )
|
304 |
+
model = FRCRN(
|
305 |
+
use_complex_networks=True,
|
306 |
+
model_complexity=45,
|
307 |
+
model_depth=14,
|
308 |
+
padding_mode="zeros",
|
309 |
+
nfft=640,
|
310 |
+
win_size=640,
|
311 |
+
hop_size=320,
|
312 |
+
win_type="hann",
|
313 |
+
)
|
314 |
+
mixture = torch.rand(size=(1, 8000), dtype=torch.float32)
|
315 |
+
|
316 |
+
est_spec, est_wav, est_mask = model.forward(mixture)
|
317 |
+
print(est_spec.shape)
|
318 |
+
print(est_wav.shape)
|
319 |
+
print(est_mask.shape)
|
320 |
+
|
321 |
+
return
|
322 |
|
323 |
|
324 |
if __name__ == "__main__":
|
325 |
+
main()
|
toolbox/torchaudio/models/frcrn/unet.py
ADDED
@@ -0,0 +1,359 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
from typing import Union, Tuple
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
|
8 |
+
from toolbox.torchaudio.models.frcrn import complex_nn
|
9 |
+
|
10 |
+
|
11 |
+
class SELayer(nn.Module):
|
12 |
+
def __init__(self, channels: int, reduction: int = 16):
|
13 |
+
super(SELayer, self).__init__()
|
14 |
+
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
15 |
+
|
16 |
+
self.fc_r = nn.Sequential(
|
17 |
+
nn.Linear(channels, channels // reduction),
|
18 |
+
nn.ReLU(inplace=True),
|
19 |
+
nn.Linear(channels // reduction, channels),
|
20 |
+
nn.Sigmoid()
|
21 |
+
)
|
22 |
+
self.fc_i = nn.Sequential(
|
23 |
+
nn.Linear(channels, channels // reduction),
|
24 |
+
nn.ReLU(inplace=True),
|
25 |
+
nn.Linear(channels // reduction, channels),
|
26 |
+
nn.Sigmoid()
|
27 |
+
)
|
28 |
+
|
29 |
+
def forward(self, x: torch.Tensor):
|
30 |
+
b, c, _, _, _ = x.size()
|
31 |
+
x_r = self.avg_pool(x[:, :, :, :, 0]).view(b, c)
|
32 |
+
x_i = self.avg_pool(x[:, :, :, :, 1]).view(b, c)
|
33 |
+
|
34 |
+
y_r = self.fc_r(x_r).view(b, c, 1, 1, 1) - self.fc_i(x_i).view(b, c, 1, 1, 1)
|
35 |
+
y_i = self.fc_r(x_i).view(b, c, 1, 1, 1) + self.fc_i(x_r).view(b, c, 1, 1, 1)
|
36 |
+
|
37 |
+
y = torch.cat(tensors=[y_r, y_i], dim=4)
|
38 |
+
return x * y
|
39 |
+
|
40 |
+
|
41 |
+
class Encoder(nn.Module):
|
42 |
+
def __init__(self,
|
43 |
+
in_channels: int,
|
44 |
+
out_channels: int,
|
45 |
+
kernel_size: Union[int, Tuple[int, int]],
|
46 |
+
stride: Union[int, Tuple[int, int]],
|
47 |
+
padding: Union[int, Tuple[int, int]] = None,
|
48 |
+
use_complex_networks: bool = False,
|
49 |
+
padding_mode: str = "zeros"
|
50 |
+
):
|
51 |
+
super().__init__()
|
52 |
+
if padding is None:
|
53 |
+
padding = [(k - 1) // 2 for k in kernel_size] # 'SAME' padding
|
54 |
+
|
55 |
+
if use_complex_networks:
|
56 |
+
conv = complex_nn.ComplexConv2d
|
57 |
+
bn = complex_nn.ComplexBatchNorm2d
|
58 |
+
else:
|
59 |
+
conv = nn.Conv2d
|
60 |
+
bn = nn.BatchNorm2d
|
61 |
+
|
62 |
+
self.conv = conv(
|
63 |
+
in_channels,
|
64 |
+
out_channels,
|
65 |
+
kernel_size=kernel_size,
|
66 |
+
stride=stride,
|
67 |
+
padding=padding,
|
68 |
+
padding_mode=padding_mode
|
69 |
+
)
|
70 |
+
self.bn = bn(out_channels)
|
71 |
+
self.relu = nn.LeakyReLU(inplace=True)
|
72 |
+
|
73 |
+
def forward(self, x: torch.Tensor):
|
74 |
+
x = self.conv(x)
|
75 |
+
x = self.bn(x)
|
76 |
+
x = self.relu(x)
|
77 |
+
return x
|
78 |
+
|
79 |
+
|
80 |
+
class Decoder(nn.Module):
|
81 |
+
def __init__(self,
|
82 |
+
in_channels: int,
|
83 |
+
out_channels: int,
|
84 |
+
kernel_size: Union[int, Tuple[int, int]],
|
85 |
+
stride: Union[int, Tuple[int, int]],
|
86 |
+
padding: Union[int, Tuple[int, int]] = (0, 0),
|
87 |
+
use_complex_networks: bool = False,
|
88 |
+
):
|
89 |
+
super().__init__()
|
90 |
+
if use_complex_networks:
|
91 |
+
tconv = complex_nn.ComplexConvTranspose2d
|
92 |
+
bn = complex_nn.ComplexBatchNorm2d
|
93 |
+
else:
|
94 |
+
tconv = nn.ConvTranspose2d
|
95 |
+
bn = nn.BatchNorm2d
|
96 |
+
|
97 |
+
self.transconv = tconv(
|
98 |
+
in_channels,
|
99 |
+
out_channels,
|
100 |
+
kernel_size=kernel_size,
|
101 |
+
stride=stride,
|
102 |
+
padding=padding
|
103 |
+
)
|
104 |
+
self.bn = bn(out_channels)
|
105 |
+
self.relu = nn.LeakyReLU(inplace=True)
|
106 |
+
|
107 |
+
def forward(self, x):
|
108 |
+
x = self.transconv(x)
|
109 |
+
x = self.bn(x)
|
110 |
+
x = self.relu(x)
|
111 |
+
return x
|
112 |
+
|
113 |
+
|
114 |
+
class UNetConfig14(object):
|
115 |
+
"""
|
116 |
+
inputs x shape: [1, 1, 321, 2000, 2]
|
117 |
+
|
118 |
+
sample rate: 16000
|
119 |
+
nfft: 640
|
120 |
+
win_size: 640
|
121 |
+
hop_size: 320 (200ms)
|
122 |
+
"""
|
123 |
+
def __init__(self, in_channels: int):
|
124 |
+
self.enc_channels = [in_channels, 128, 128, 128, 128, 128, 128, 128]
|
125 |
+
self.enc_kernel_sizes = [(5, 2), (5, 2), (5, 2), (5, 2), (5, 2), (5, 2), (2, 2)]
|
126 |
+
self.enc_strides = [(2, 1), (2, 1), (2, 1), (2, 1), (2, 1), (2, 1), (2, 1)]
|
127 |
+
self.enc_paddings = [(0, 1), (0, 1), (0, 1), (0, 1), (0, 1), (0, 1), (0, 1)]
|
128 |
+
|
129 |
+
self.dec_channels = [64, 128, 128, 128, 128, 128, 128, 1]
|
130 |
+
self.dec_kernel_sizes = [(2, 2), (5, 2), (5, 2), (5, 2), (6, 2), (5, 2), (5, 2)]
|
131 |
+
self.dec_strides = [(2, 1), (2, 1), (2, 1), (2, 1), (2, 1), (2, 1), (2, 1)]
|
132 |
+
self.dec_paddings = [(0, 1), (0, 1), (0, 1), (0, 1), (0, 1), (0, 1), (0, 1)]
|
133 |
+
|
134 |
+
|
135 |
+
class UNetConfig10(object):
|
136 |
+
"""
|
137 |
+
inputs x shape: [1, 1, 65, 200, 2]
|
138 |
+
|
139 |
+
sample rate: 8000
|
140 |
+
nfft: 128
|
141 |
+
win_size: 128
|
142 |
+
hop_size: 64 (8ms)
|
143 |
+
|
144 |
+
"""
|
145 |
+
def __init__(self, in_channels: int):
|
146 |
+
self.enc_channels = [in_channels, 16, 32, 64, 128, 256]
|
147 |
+
self.enc_kernel_sizes = [(3, 3), (3, 3), (3, 3), (3, 3), (3, 3)]
|
148 |
+
self.enc_strides = [(2, 1), (2, 1), (2, 1), (2, 1), (2, 1)]
|
149 |
+
self.enc_paddings = [(0, 1), (0, 1), (0, 1), (0, 1), (0, 1)]
|
150 |
+
|
151 |
+
self.dec_channels = [128, 128, 64, 32, 16, 1]
|
152 |
+
self.dec_kernel_sizes = [(3, 3), (3, 3), (3, 3), (4, 3), (3, 3)]
|
153 |
+
self.dec_strides = [(2, 1), (2, 1), (2, 1), (2, 1), (2, 1)]
|
154 |
+
self.dec_paddings = [(0, 1), (0, 1), (0, 1), (0, 1), (0, 1)]
|
155 |
+
|
156 |
+
|
157 |
+
class UNetConfig20(object):
|
158 |
+
"""
|
159 |
+
inputs x shape: [1, 1, 257, 2000, 2]
|
160 |
+
|
161 |
+
sample rate: 8000
|
162 |
+
nfft: 512
|
163 |
+
win_size: 512
|
164 |
+
hop_size: 256 (32ms)
|
165 |
+
|
166 |
+
"""
|
167 |
+
def __init__(self, in_channels: int, model_complexity: int):
|
168 |
+
self.enc_channels = [
|
169 |
+
in_channels,
|
170 |
+
model_complexity, model_complexity,
|
171 |
+
model_complexity * 2, model_complexity * 2,
|
172 |
+
model_complexity * 2, model_complexity * 2,
|
173 |
+
model_complexity * 2, model_complexity * 2,
|
174 |
+
model_complexity * 2,
|
175 |
+
128
|
176 |
+
]
|
177 |
+
|
178 |
+
self.enc_kernel_sizes = [(7, 1), (1, 7), (6, 4), (7, 5), (5, 3),
|
179 |
+
(5, 3), (5, 3), (5, 3), (5, 3), (5, 3)]
|
180 |
+
|
181 |
+
self.enc_strides = [(1, 1), (1, 1), (2, 2), (2, 1), (2, 2),
|
182 |
+
(2, 1), (2, 2), (2, 1), (2, 2), (2, 1)]
|
183 |
+
|
184 |
+
self.enc_paddings = [
|
185 |
+
(3, 0),
|
186 |
+
(0, 3),
|
187 |
+
None, # (0, 2),
|
188 |
+
None,
|
189 |
+
None, # (3,1),
|
190 |
+
None, # (3,1),
|
191 |
+
None, # (1,2),
|
192 |
+
None,
|
193 |
+
None,
|
194 |
+
None
|
195 |
+
]
|
196 |
+
|
197 |
+
self.dec_channels = [
|
198 |
+
64,
|
199 |
+
model_complexity * 2,
|
200 |
+
model_complexity * 2, model_complexity * 2,
|
201 |
+
model_complexity * 2, model_complexity * 2,
|
202 |
+
model_complexity * 2, model_complexity * 2,
|
203 |
+
model_complexity, model_complexity,
|
204 |
+
1
|
205 |
+
]
|
206 |
+
|
207 |
+
self.dec_kernel_sizes = [(4, 3), (4, 2), (4, 3), (4, 2), (4, 3),
|
208 |
+
(4, 2), (6, 3), (7, 4), (1, 7), (7, 1)]
|
209 |
+
|
210 |
+
self.dec_strides = [(2, 1), (2, 2), (2, 1), (2, 2), (2, 1),
|
211 |
+
(2, 2), (2, 1), (2, 2), (1, 1), (1, 1)]
|
212 |
+
|
213 |
+
self.dec_paddings = [(1, 1), (1, 0), (1, 1), (1, 0), (1, 1),
|
214 |
+
(1, 0), (2, 1), (2, 1), (0, 3), (3, 0)]
|
215 |
+
|
216 |
+
|
217 |
+
class UNet(nn.Module):
|
218 |
+
def __init__(self,
|
219 |
+
in_channels: int = 1,
|
220 |
+
use_complex_networks: bool = False,
|
221 |
+
model_complexity: int = 45,
|
222 |
+
model_depth: int = 20,
|
223 |
+
padding_mode: str = "zeros"
|
224 |
+
):
|
225 |
+
super().__init__()
|
226 |
+
if use_complex_networks:
|
227 |
+
model_complexity = int(model_complexity // 1.414)
|
228 |
+
|
229 |
+
# config
|
230 |
+
if model_depth == 14:
|
231 |
+
config = UNetConfig14(in_channels)
|
232 |
+
elif model_depth == 10:
|
233 |
+
config = UNetConfig10(in_channels)
|
234 |
+
elif model_depth == 20:
|
235 |
+
config = UNetConfig20(in_channels, model_complexity)
|
236 |
+
else:
|
237 |
+
raise AssertionError(f"Unknown model depth : {model_depth}")
|
238 |
+
|
239 |
+
self.model_length = model_depth // 2
|
240 |
+
|
241 |
+
self.fsmn = complex_nn.ComplexUniDeepFsmn(
|
242 |
+
config.enc_channels[-1],
|
243 |
+
config.enc_channels[-1]
|
244 |
+
)
|
245 |
+
|
246 |
+
# go down
|
247 |
+
self.encoder_layers = nn.ModuleList(modules=[])
|
248 |
+
for i in range(self.model_length):
|
249 |
+
encoder_layer = nn.Sequential(
|
250 |
+
complex_nn.ComplexUniDeepFsmnL1(
|
251 |
+
config.enc_channels[i],
|
252 |
+
config.enc_channels[i]
|
253 |
+
)
|
254 |
+
if i != 0 else nn.Identity(),
|
255 |
+
Encoder(
|
256 |
+
config.enc_channels[i],
|
257 |
+
config.enc_channels[i + 1],
|
258 |
+
kernel_size=config.enc_kernel_sizes[i],
|
259 |
+
stride=config.enc_strides[i],
|
260 |
+
padding=config.enc_paddings[i],
|
261 |
+
use_complex_networks=use_complex_networks,
|
262 |
+
padding_mode=padding_mode
|
263 |
+
),
|
264 |
+
SELayer(config.enc_channels[i + 1], reduction=8)
|
265 |
+
)
|
266 |
+
self.encoder_layers.append(encoder_layer)
|
267 |
+
|
268 |
+
self.decoder_layers = nn.ModuleList(modules=[])
|
269 |
+
for i in range(self.model_length):
|
270 |
+
decoder_layer = nn.Sequential(
|
271 |
+
Decoder(
|
272 |
+
config.dec_channels[i] * 2,
|
273 |
+
config.dec_channels[i + 1],
|
274 |
+
kernel_size=config.dec_kernel_sizes[i],
|
275 |
+
stride=config.dec_strides[i],
|
276 |
+
padding=config.dec_paddings[i],
|
277 |
+
use_complex_networks=use_complex_networks
|
278 |
+
),
|
279 |
+
complex_nn.ComplexUniDeepFsmnL1(
|
280 |
+
config.dec_channels[i + 1],
|
281 |
+
config.dec_channels[i + 1]
|
282 |
+
)
|
283 |
+
if i < (self.model_length - 1) else nn.Identity(),
|
284 |
+
SELayer(
|
285 |
+
config.dec_channels[i + 1],
|
286 |
+
reduction=8
|
287 |
+
)
|
288 |
+
if i < (self.model_length - 2) else nn.Identity()
|
289 |
+
)
|
290 |
+
self.decoder_layers.append(decoder_layer)
|
291 |
+
|
292 |
+
if use_complex_networks:
|
293 |
+
conv = complex_nn.ComplexConv2d
|
294 |
+
else:
|
295 |
+
conv = nn.Conv2d
|
296 |
+
|
297 |
+
self.linear = conv(
|
298 |
+
in_channels=config.dec_channels[-1],
|
299 |
+
out_channels=1,
|
300 |
+
kernel_size=1,
|
301 |
+
)
|
302 |
+
|
303 |
+
def forward(self, inputs: torch.Tensor):
|
304 |
+
"""
|
305 |
+
:param inputs: torch.Tensor, shape: [b, c, f, t, 2]
|
306 |
+
:return:
|
307 |
+
"""
|
308 |
+
x = inputs
|
309 |
+
|
310 |
+
# go down
|
311 |
+
xs = list()
|
312 |
+
xs_se = list()
|
313 |
+
xs_se.append(x)
|
314 |
+
for encoder_layer in self.encoder_layers:
|
315 |
+
xs.append(x)
|
316 |
+
# print(f"x: {x.shape}")
|
317 |
+
x = encoder_layer.forward(x)
|
318 |
+
# print(f"x: {x.shape}")
|
319 |
+
xs_se.append(x)
|
320 |
+
|
321 |
+
# x shape: [b, c, 1, t', 2]
|
322 |
+
x = self.fsmn.forward(x)
|
323 |
+
# x shape: [b, c, 1, t', 2]
|
324 |
+
# print(f"fsmn")
|
325 |
+
|
326 |
+
p = x
|
327 |
+
for i, decoder_layers in enumerate(self.decoder_layers):
|
328 |
+
# print(f"x: {x.shape}")
|
329 |
+
p = decoder_layers.forward(p)
|
330 |
+
# print(f"p: {p.shape}")
|
331 |
+
if i == self.model_length - 1:
|
332 |
+
break
|
333 |
+
p = torch.cat(tensors=[p, xs_se[self.model_length - 1 - i]], dim=1)
|
334 |
+
|
335 |
+
# cmp_spec: [1, 1, 321, 200, 2]
|
336 |
+
# cmp_spec: [1, 1, 513, 200, 2]
|
337 |
+
cmp_spec = self.linear.forward(p)
|
338 |
+
return cmp_spec
|
339 |
+
|
340 |
+
|
341 |
+
def main():
|
342 |
+
# [batch_size, 1, freq_bins, time_steps, 2]
|
343 |
+
x = torch.rand(size=(1, 1, 257, 2000, 2))
|
344 |
+
# x = torch.rand(size=(1, 1, 256, 2000, 2))
|
345 |
+
# x = torch.rand(size=(1, 1, 255, 2000, 2))
|
346 |
+
unet = UNet(
|
347 |
+
in_channels=1,
|
348 |
+
model_complexity=45,
|
349 |
+
model_depth=20,
|
350 |
+
use_complex_networks=True
|
351 |
+
)
|
352 |
+
print(unet)
|
353 |
+
result = unet.forward(x)
|
354 |
+
print(result.shape)
|
355 |
+
return
|
356 |
+
|
357 |
+
|
358 |
+
if __name__ == "__main__":
|
359 |
+
main()
|
toolbox/torchaudio/models/frcrn/uni_deep_fsmn.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
"""
|
4 |
+
https://github.com/modelscope/modelscope/blob/master/modelscope/models/audio/ans/layers/uni_deep_fsmn.py
|
5 |
+
https://huggingface.co/spaces/alibabasglab/ClearVoice/blob/main/models/mossformer2_se/fsmn.py
|
6 |
+
"""
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
|
11 |
+
|
12 |
+
class UniDeepFsmn(nn.Module):
|
13 |
+
|
14 |
+
def __init__(self,
|
15 |
+
input_dim: int,
|
16 |
+
hidden_size: int,
|
17 |
+
lorder: int = 1,
|
18 |
+
):
|
19 |
+
super(UniDeepFsmn, self).__init__()
|
20 |
+
self.input_dim = input_dim
|
21 |
+
self.hidden_size = hidden_size
|
22 |
+
self.lorder = lorder
|
23 |
+
|
24 |
+
self.linear = nn.Linear(input_dim, hidden_size)
|
25 |
+
self.project = nn.Linear(hidden_size, input_dim, bias=False)
|
26 |
+
self.conv1 = nn.Conv2d(
|
27 |
+
input_dim,
|
28 |
+
input_dim,
|
29 |
+
kernel_size=(lorder, 1),
|
30 |
+
stride=(1, 1),
|
31 |
+
groups=input_dim,
|
32 |
+
bias=False
|
33 |
+
)
|
34 |
+
|
35 |
+
def forward(self, inputs: torch.Tensor):
|
36 |
+
"""
|
37 |
+
:param inputs: torch.Tensor, shape: [b, t, h]
|
38 |
+
:return: torch.Tensor, shape: [b, t, h]
|
39 |
+
"""
|
40 |
+
x = F.relu(self.linear(inputs))
|
41 |
+
x = self.project(x)
|
42 |
+
x = torch.unsqueeze(x, 1)
|
43 |
+
# x shape: [b, 1, t, h]
|
44 |
+
|
45 |
+
x = x.permute(0, 3, 2, 1)
|
46 |
+
# x shape: [b, h, t, 1]
|
47 |
+
y = F.pad(x, [0, 0, self.lorder - 1, 0])
|
48 |
+
|
49 |
+
x = x + self.conv1(y)
|
50 |
+
x = x.permute(0, 3, 2, 1)
|
51 |
+
# x shape: [b, 1, t, h]
|
52 |
+
x = x.squeeze()
|
53 |
+
|
54 |
+
result = inputs + x
|
55 |
+
return result
|
56 |
+
|
57 |
+
|
58 |
+
def main():
|
59 |
+
x = torch.rand(size=(1, 200, 32))
|
60 |
+
fsmn = UniDeepFsmn(
|
61 |
+
input_dim=32,
|
62 |
+
hidden_size=64,
|
63 |
+
lorder=3,
|
64 |
+
)
|
65 |
+
result = fsmn.forward(x)
|
66 |
+
print(result.shape)
|
67 |
+
return
|
68 |
+
|
69 |
+
|
70 |
+
if __name__ == "__main__":
|
71 |
+
main()
|