#!/usr/bin/python3 # -*- coding: utf-8 -*- import torch import torch.nn as nn inputs = torch.randn(size=(1, 1, 16000)) conv1d = nn.Conv1d( in_channels=1, out_channels=1, kernel_size=3, stride=2, padding=0, dilation=1, ) conv1dt = nn.ConvTranspose1d( in_channels=1, out_channels=1, kernel_size=3, stride=2, padding=0, output_padding=1, dilation=1, ) x = conv1d.forward(inputs) print(x.shape) x = conv1dt.forward(x) print(x.shape) print(x[:, :, 0]) print(x[:, :, -2]) print(x[:, :, -1]) if __name__ == "__main__": pass