model_name: "dfnet" # spec sample_rate: 8000 nfft: 512 win_size: 512 hop_size: 128 spec_bins: 256 erb_bins: 32 min_freq_bins_for_erb: 2 use_ema_norm: true # model conv_channels: 64 conv_kernel_size_input: - 3 - 3 conv_kernel_size_inner: - 1 - 3 convt_kernel_size_inner: - 1 - 3 embedding_hidden_size: 256 encoder_combine_op: "concat" encoder_emb_skip_op: "none" encoder_emb_linear_groups: 16 encoder_emb_hidden_size: 256 encoder_linear_groups: 32 decoder_emb_num_layers: 3 decoder_emb_skip_op: "none" decoder_emb_linear_groups: 16 decoder_emb_hidden_size: 256 df_decoder_hidden_size: 256 df_num_layers: 2 df_order: 5 df_bins: 96 df_gru_skip: "grouped_linear" df_decoder_linear_groups: 16 df_pathway_kernel_size_t: 5 df_lookahead: 2 # lsnr n_frame: 3 lsnr_max: 30 lsnr_min: -15 norm_tau: 1. # data min_snr_db: -10 max_snr_db: 20 # train lr: 0.001 lr_scheduler: "CosineAnnealingLR" lr_scheduler_kwargs: T_max: 250000 eta_min: 0.0001 max_epochs: 100 clip_grad_norm: 10.0 seed: 1234 num_workers: 8 batch_size: 96 eval_steps: 10000 # runtime use_post_filter: true