#!/usr/bin/python3 # -*- coding: utf-8 -*- import math import numpy as np def freq2erb(freq_hz: float) -> float: """ https://www.cnblogs.com/LXP-Never/p/16011229.html 1 / (24.7 * 9.265) = 0.00436976 """ return 9.265 * math.log(freq_hz / (24.7 * 9.265) + 1) def erb2freq(n_erb: float) -> float: return 24.7 * 9.265 * (math.exp(n_erb / 9.265) - 1) def get_erb_widths(sample_rate: int, fft_size: int, erb_bins: int, min_freq_bins_for_erb: int) -> np.ndarray: """ https://github.com/Rikorose/DeepFilterNet/blob/main/libDF/src/lib.rs :param sample_rate: :param fft_size: :param erb_bins: erb (Equivalent Rectangular Bandwidth) 等效矩形带宽的通道数. :param min_freq_bins_for_erb: Minimum number of frequency bands per erb band :return: """ nyq_freq = sample_rate / 2. freq_width: float = sample_rate / fft_size min_erb: float = freq2erb(0.) max_erb: float = freq2erb(nyq_freq) erb = [0] * erb_bins step = (max_erb - min_erb) / erb_bins prev_freq_bin = 0 freq_over = 0 for i in range(1, erb_bins + 1): f = erb2freq(min_erb + i * step) freq_bin = int(round(f / freq_width)) freq_bins = freq_bin - prev_freq_bin - freq_over if freq_bins < min_freq_bins_for_erb: freq_over = min_freq_bins_for_erb - freq_bins freq_bins = min_freq_bins_for_erb else: freq_over = 0 erb[i - 1] = freq_bins prev_freq_bin = freq_bin erb[erb_bins - 1] += 1 too_large = sum(erb) - (fft_size / 2 + 1) if too_large > 0: erb[erb_bins - 1] -= too_large return np.array(erb, dtype=np.uint64) def get_erb_filter_bank(erb_widths: np.ndarray, sample_rate: int, normalized: bool = True, inverse: bool = False, ): num_freq_bins = int(np.sum(erb_widths)) num_erb_bins = len(erb_widths) fb: np.ndarray = np.zeros(shape=(num_freq_bins, num_erb_bins)) points = np.cumsum([0] + erb_widths.tolist()).astype(int)[:-1] for i, (b, w) in enumerate(zip(points.tolist(), erb_widths.tolist())): fb[b: b + w, i] = 1 if inverse: fb = fb.T if not normalized: fb /= np.sum(fb, axis=1, keepdims=True) else: if normalized: fb /= np.sum(fb, axis=0) return fb def spec2erb(spec: np.ndarray, erb_fb: np.ndarray, db: bool = True): """ ERB filterbank and transform to decibel scale. :param spec: Spectrum of shape [B, C, T, F]. :param erb_fb: ERB filterbank array of shape [B] containing the ERB widths, where B are the number of ERB bins. :param db: Whether to transform the output into decibel scale. Defaults to `True`. :return: """ # complex spec to power spec. (real * real + image * image) spec_ = np.abs(spec) ** 2 # spec to erb feature. erb_feat = np.matmul(spec_, erb_fb) if db: erb_feat = 10 * np.log10(erb_feat + 1e-10) erb_feat = np.array(erb_feat, dtype=np.float32) return erb_feat def _calculate_norm_alpha(sample_rate: int, hop_size: int, tau: float): """Exponential decay factor alpha for a given tau (decay window size [s]).""" dt = hop_size / sample_rate result = math.exp(-dt / tau) return result def get_norm_alpha(sample_rate: int, hop_size: int, norm_tau: float) -> float: a_ = _calculate_norm_alpha(sample_rate=sample_rate, hop_size=hop_size, tau=norm_tau) precision = 3 a = 1.0 while a >= 1.0: a = round(a_, precision) precision += 1 return a MEAN_NORM_INIT = [-60., -90.] def make_erb_norm_state(erb_bins: int, channels: int) -> np.ndarray: state = np.linspace(MEAN_NORM_INIT[0], MEAN_NORM_INIT[1], erb_bins) state = np.expand_dims(state, axis=0) state = np.repeat(state, channels, axis=0) # state shape: (audio_channels, erb_bins) return state def erb_normalize(erb_feat: np.ndarray, alpha: float, state: np.ndarray = None): erb_feat = np.copy(erb_feat) batch_size, time_steps, erb_bins = erb_feat.shape if state is None: state = make_erb_norm_state(erb_bins, erb_feat.shape[0]) # state = np.linspace(MEAN_NORM_INIT[0], MEAN_NORM_INIT[1], erb_bins) # state = np.expand_dims(state, axis=0) # state = np.repeat(state, erb_feat.shape[0], axis=0) for i in range(batch_size): for j in range(time_steps): for k in range(erb_bins): x = erb_feat[i][j][k] s = state[i][k] state[i][k] = x * (1. - alpha) + s * alpha erb_feat[i][j][k] -= state[i][k] erb_feat[i][j][k] /= 40. return erb_feat UNIT_NORM_INIT = [0.001, 0.0001] def make_spec_norm_state(df_bins: int, channels: int) -> np.ndarray: state = np.linspace(UNIT_NORM_INIT[0], UNIT_NORM_INIT[1], df_bins) state = np.expand_dims(state, axis=0) state = np.repeat(state, channels, axis=0) # state shape: (audio_channels, df_bins) return state def spec_normalize(spec_feat: np.ndarray, alpha: float, state: np.ndarray = None): spec_feat = np.copy(spec_feat) batch_size, time_steps, df_bins = spec_feat.shape if state is None: state = make_spec_norm_state(df_bins, spec_feat.shape[0]) for i in range(batch_size): for j in range(time_steps): for k in range(df_bins): x = spec_feat[i][j][k] s = state[i][k] state[i][k] = np.abs(x) * (1. - alpha) + s * alpha spec_feat[i][j][k] /= np.sqrt(state[i][k]) return spec_feat if __name__ == '__main__': pass