Spaces:
Sleeping
Sleeping
update
Browse files
examples/vm_sound_classification/conv2d_classifier.yaml
CHANGED
@@ -10,29 +10,24 @@ mel_spectrogram_param:
|
|
10 |
window_fn: hamming
|
11 |
n_mels: 80
|
12 |
|
13 |
-
spec_augment_param:
|
14 |
-
aug_volume_factor_range:
|
15 |
-
- 0.5
|
16 |
-
- 2.0
|
17 |
-
|
18 |
conv2d_block_param_list:
|
19 |
- batch_norm: true
|
20 |
in_channels: 1
|
21 |
-
out_channels:
|
22 |
kernel_size: 3
|
23 |
stride: 1
|
24 |
dilation: 3
|
25 |
activation: relu
|
26 |
dropout: 0.1
|
27 |
-
- in_channels:
|
28 |
-
out_channels:
|
29 |
kernel_size: 5
|
30 |
stride: 2
|
31 |
dilation: 3
|
32 |
activation: relu
|
33 |
dropout: 0.1
|
34 |
-
- in_channels:
|
35 |
-
out_channels:
|
36 |
kernel_size: 3
|
37 |
stride: 1
|
38 |
dilation: 2
|
@@ -40,7 +35,7 @@ conv2d_block_param_list:
|
|
40 |
dropout: 0.1
|
41 |
|
42 |
cls_head_param:
|
43 |
-
input_dim:
|
44 |
num_layers: 2
|
45 |
hidden_dims:
|
46 |
- 128
|
|
|
10 |
window_fn: hamming
|
11 |
n_mels: 80
|
12 |
|
|
|
|
|
|
|
|
|
|
|
13 |
conv2d_block_param_list:
|
14 |
- batch_norm: true
|
15 |
in_channels: 1
|
16 |
+
out_channels: 4
|
17 |
kernel_size: 3
|
18 |
stride: 1
|
19 |
dilation: 3
|
20 |
activation: relu
|
21 |
dropout: 0.1
|
22 |
+
- in_channels: 4
|
23 |
+
out_channels: 4
|
24 |
kernel_size: 5
|
25 |
stride: 2
|
26 |
dilation: 3
|
27 |
activation: relu
|
28 |
dropout: 0.1
|
29 |
+
- in_channels: 4
|
30 |
+
out_channels: 4
|
31 |
kernel_size: 3
|
32 |
stride: 1
|
33 |
dilation: 2
|
|
|
35 |
dropout: 0.1
|
36 |
|
37 |
cls_head_param:
|
38 |
+
input_dim: 108
|
39 |
num_layers: 2
|
40 |
hidden_dims:
|
41 |
- 128
|
examples/vm_sound_classification/run.sh
CHANGED
@@ -12,8 +12,8 @@ sh run.sh --stage 2 --stop_stage 2 --system_version windows --file_folder_name f
|
|
12 |
E:/Users/tianx/HuggingDatasets/vm_sound_classification/data/wav_finished/id-ID/wav_finished/*/*.wav" \
|
13 |
--label_plan 4
|
14 |
|
15 |
-
sh run.sh --stage 0 --stop_stage 5 --system_version centos --file_folder_name file_dir --final_model_name
|
16 |
-
--filename_patterns "/data/tianxing/PycharmProjects/datasets/voicemail/*/wav_finished/*/*.wav" --label_plan
|
17 |
|
18 |
"
|
19 |
|
|
|
12 |
E:/Users/tianx/HuggingDatasets/vm_sound_classification/data/wav_finished/id-ID/wav_finished/*/*.wav" \
|
13 |
--label_plan 4
|
14 |
|
15 |
+
sh run.sh --stage 0 --stop_stage 5 --system_version centos --file_folder_name file_dir --final_model_name vm_sound_classification3-ch16 \
|
16 |
+
--filename_patterns "/data/tianxing/PycharmProjects/datasets/voicemail/*/wav_finished/*/*.wav" --label_plan 3
|
17 |
|
18 |
"
|
19 |
|
toolbox/torchaudio/models/cnn_audio_classifier/configuration_cnn_audio_classifier.py
CHANGED
@@ -8,7 +8,6 @@ from toolbox.torchaudio.configuration_utils import PretrainedConfig
|
|
8 |
class CnnAudioClassifierConfig(PretrainedConfig):
|
9 |
def __init__(self,
|
10 |
mel_spectrogram_param: dict,
|
11 |
-
spec_augment_param: dict,
|
12 |
cls_head_param: dict,
|
13 |
conv1d_block_param_list: List[dict] = None,
|
14 |
conv2d_block_param_list: List[dict] = None,
|
@@ -16,7 +15,6 @@ class CnnAudioClassifierConfig(PretrainedConfig):
|
|
16 |
):
|
17 |
super(CnnAudioClassifierConfig, self).__init__(**kwargs)
|
18 |
self.mel_spectrogram_param = mel_spectrogram_param
|
19 |
-
self.spec_augment_param = spec_augment_param
|
20 |
self.cls_head_param = cls_head_param
|
21 |
self.conv1d_block_param_list = conv1d_block_param_list
|
22 |
self.conv2d_block_param_list = conv2d_block_param_list
|
|
|
8 |
class CnnAudioClassifierConfig(PretrainedConfig):
|
9 |
def __init__(self,
|
10 |
mel_spectrogram_param: dict,
|
|
|
11 |
cls_head_param: dict,
|
12 |
conv1d_block_param_list: List[dict] = None,
|
13 |
conv2d_block_param_list: List[dict] = None,
|
|
|
15 |
):
|
16 |
super(CnnAudioClassifierConfig, self).__init__(**kwargs)
|
17 |
self.mel_spectrogram_param = mel_spectrogram_param
|
|
|
18 |
self.cls_head_param = cls_head_param
|
19 |
self.conv1d_block_param_list = conv1d_block_param_list
|
20 |
self.conv2d_block_param_list = conv2d_block_param_list
|
toolbox/torchaudio/models/cnn_audio_classifier/modeling_cnn_audio_classifier.py
CHANGED
@@ -9,7 +9,6 @@ import torchaudio
|
|
9 |
|
10 |
from toolbox.torchaudio.models.cnn_audio_classifier.configuration_cnn_audio_classifier import CnnAudioClassifierConfig
|
11 |
from toolbox.torchaudio.configuration_utils import CONFIG_FILE
|
12 |
-
from toolbox.torchaudio.augment.spec_augment import SpecAugment
|
13 |
|
14 |
|
15 |
MODEL_FILE = "model.pt"
|
@@ -241,7 +240,6 @@ class SpectrogramEncoder(nn.Module):
|
|
241 |
class WaveEncoder(nn.Module):
|
242 |
def __init__(self,
|
243 |
mel_spectrogram_param: dict,
|
244 |
-
spec_augment_param: dict,
|
245 |
conv1d_block_param_list: List[dict] = None,
|
246 |
conv2d_block_param_list: List[dict] = None,
|
247 |
):
|
@@ -264,21 +262,11 @@ class WaveEncoder(nn.Module):
|
|
264 |
),
|
265 |
)
|
266 |
|
267 |
-
self.spec_augment = SpecAugment(
|
268 |
-
aug_volume_factor_range=spec_augment_param["aug_volume_factor_range"]
|
269 |
-
)
|
270 |
-
|
271 |
self.spectrogram_encoder = SpectrogramEncoder(
|
272 |
conv1d_block_param_list=conv1d_block_param_list,
|
273 |
conv2d_block_param_list=conv2d_block_param_list,
|
274 |
)
|
275 |
|
276 |
-
@torch.jit.ignore
|
277 |
-
def do_spec_augment(self, spec: torch.Tensor) -> torch.Tensor:
|
278 |
-
if self.training:
|
279 |
-
spec = self.spec_augment.forward(spec)
|
280 |
-
return spec
|
281 |
-
|
282 |
def forward(self, inputs: torch.Tensor):
|
283 |
# x: [batch_size, spec_dim, seq_length]
|
284 |
x = inputs
|
@@ -289,8 +277,6 @@ class WaveEncoder(nn.Module):
|
|
289 |
x = x.log()
|
290 |
x = x - torch.mean(x, dim=-1, keepdim=True)
|
291 |
|
292 |
-
x = self.do_spec_augment(x)
|
293 |
-
|
294 |
x = x.transpose(1, 2)
|
295 |
|
296 |
features = self.spectrogram_encoder.forward(x)
|
|
|
9 |
|
10 |
from toolbox.torchaudio.models.cnn_audio_classifier.configuration_cnn_audio_classifier import CnnAudioClassifierConfig
|
11 |
from toolbox.torchaudio.configuration_utils import CONFIG_FILE
|
|
|
12 |
|
13 |
|
14 |
MODEL_FILE = "model.pt"
|
|
|
240 |
class WaveEncoder(nn.Module):
|
241 |
def __init__(self,
|
242 |
mel_spectrogram_param: dict,
|
|
|
243 |
conv1d_block_param_list: List[dict] = None,
|
244 |
conv2d_block_param_list: List[dict] = None,
|
245 |
):
|
|
|
262 |
),
|
263 |
)
|
264 |
|
|
|
|
|
|
|
|
|
265 |
self.spectrogram_encoder = SpectrogramEncoder(
|
266 |
conv1d_block_param_list=conv1d_block_param_list,
|
267 |
conv2d_block_param_list=conv2d_block_param_list,
|
268 |
)
|
269 |
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
def forward(self, inputs: torch.Tensor):
|
271 |
# x: [batch_size, spec_dim, seq_length]
|
272 |
x = inputs
|
|
|
277 |
x = x.log()
|
278 |
x = x - torch.mean(x, dim=-1, keepdim=True)
|
279 |
|
|
|
|
|
280 |
x = x.transpose(1, 2)
|
281 |
|
282 |
features = self.spectrogram_encoder.forward(x)
|