HoneyTian commited on
Commit
f1378f5
1 Parent(s): e7833cb
examples/vm_sound_classification/run.sh CHANGED
@@ -12,8 +12,8 @@ sh run.sh --stage 2 --stop_stage 2 --system_version windows --file_folder_name f
12
  E:/Users/tianx/HuggingDatasets/vm_sound_classification/data/wav_finished/id-ID/wav_finished/*/*.wav" \
13
  --label_plan 4
14
 
15
- sh run.sh --stage 2 --stop_stage 2 --system_version centos --file_folder_name file_dir --final_model_name vm_sound_classification2-ch4 \
16
- --filename_patterns "/data/tianxing/PycharmProjects/datasets/voicemail/*/wav_finished/*/*.wav" --label_plan 2
17
 
18
  "
19
 
 
12
  E:/Users/tianx/HuggingDatasets/vm_sound_classification/data/wav_finished/id-ID/wav_finished/*/*.wav" \
13
  --label_plan 4
14
 
15
+ sh run.sh --stage 0 --stop_stage 5 --system_version centos --file_folder_name file_dir --final_model_name vm_sound_classification8-ch32 \
16
+ --filename_patterns "/data/tianxing/PycharmProjects/datasets/voicemail/*/wav_finished/*/*.wav" --label_plan 8
17
 
18
  "
19
 
toolbox/torchaudio/augment/spec_augment.py DELETED
@@ -1,46 +0,0 @@
1
- #!/usr/bin/python3
2
- # -*- coding: utf-8 -*-
3
- """
4
- https://github.com/wenet-e2e/wenet/blob/main/wenet/dataset/processor.py
5
- """
6
- import random
7
- from typing import List, Tuple
8
-
9
- import torch
10
- import torch.nn as nn
11
- from torch.distributions import uniform
12
-
13
-
14
- class SpecAugment(nn.Module):
15
- def __init__(self,
16
- aug_volume_factor_range: Tuple[float, float] = (0.5, 2.0),
17
- ):
18
- super().__init__()
19
- self.aug_volume_factor_range = aug_volume_factor_range
20
-
21
- @staticmethod
22
- def augment_volume(spec: torch.Tensor, factor_range: Tuple[float, float] = (0.5, 2.0)):
23
- factor = uniform.Uniform(*factor_range)
24
- factor = factor.sample()
25
- spec_ = spec.clone().detach()
26
- spec_ *= factor
27
- return spec_
28
-
29
- def forward(self, spec: torch.Tensor) -> torch.Tensor:
30
- spec = self.augment_volume(spec, self.aug_volume_factor_range)
31
- return spec
32
-
33
-
34
- def main():
35
- spec_augment = SpecAugment()
36
-
37
- spec = torch.randn(size=(1, 10, 4))
38
- print(spec)
39
-
40
- spec_ = spec_augment.forward(spec)
41
- print(spec_)
42
- return
43
-
44
-
45
- if __name__ == '__main__':
46
- main()