File size: 8,545 Bytes
5caedb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
---
description: H2O LLM Studio provides a number of data connectors to support importing data from local or external sources and requires your data to be in a certain format for successful importing of data.
---
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
import Admonition from '@theme/Admonition';
import upload_dataset from './upload-dataset.png';
import upload_local_file from './upload-local-file.png';
import import_s3_bucket from './import-s3-bucket.png';
import import_kaggle_dataset from './import-kaggle-dataset.png';
import import_h2odrive_dataset from './import-h2o-drive-dataset.png';
import DatasetNameTooltip from '../../tooltips/experiments/_dataset-name.mdx';
import ProblemTypeTooltip from '../../tooltips/experiments/_problem-type.mdx';
import TrainDataframeTooltip from '../../tooltips/experiments/_train-dataframe.mdx';
import ValidationDataframeTooltip from '../../tooltips/experiments/_validation-dataframe.mdx';
import SystemColumnTooltip from '../../tooltips/experiments/_system-column.mdx';
import PromptColumnTooltip from '../../tooltips/experiments/_prompt-column.mdx';
import RejectedPromptColumnTooltip from '../../tooltips/experiments/_rejected-prompt-column.mdx';
import AnswerColumnTooltip from '../../tooltips/experiments/_answer-column.mdx';
import RejectedAnswerColumnTooltip from '../../tooltips/experiments/_rejected-answer-column.mdx';
import ParentIdColumnTooltip from '../../tooltips/experiments/_parent-id-column.mdx';

# Import a dataset

H2O LLM Studio provides a number of data connectors to support importing data from local or external sources and requires your data to be in a certain format for successful importing of data. 

For more information, see [Supported data connectors and format](data-connectors-format).

## Import data

Follow the relevant steps below to import a dataset to H2O LLM Studio.

1. On the H2O LLM Studio left-navigation pane, click **Import dataset**.
2. Select the relevant **Source** (data connector) that you want to use from the dropdown list .
    :::note Data sources
    <Tabs className="unique-tabs">
    <TabItem value="upload" label="Upload" default>
        <ol>
        <li>
        Drag and drop the file, or click <b>Browse</b> and select the file you want to upload.
        </li>
        <li>
        Click <b>Upload</b>.
        <img src={upload_dataset} alt="upload-dataset" />
        </li>
        </ol>
    </TabItem>
    <TabItem value="local" label="Local">
        <ol>
        <li>
        Enter the file path as the <b>File Location</b> or select the relevant local directory that the dataset is located in. 
        </li>
        <li>
        Click <b>Continue</b>.
        <img src={upload_local_file} alt="upload-local-file" />
        </li>
        </ol>
    </TabItem>
    <TabItem value="aws" label="AWS S3">
        <ol>
        <li>
        Enter values for the following fields:
            <ul>
            <li>
            <b>S3 bucket name: </b> <br></br>
            The name of the S3 bucket including the reletive file paths.
            </li>
            <li>
            <b>AWS access key: </b><br></br>
            The access key associated with your S3 bucket. This field is optional. If the S3 bucket is public, you can leave this empty for anonymous access. 
            </li>
            <li>
            <b>AWS access secret: </b><br></br>
            The access secret associated with your S3 bucket. This field is optional. If the S3 bucket is public, you can leave this empty for anonymous access.
            </li>
            <li>
            <b>File name: </b><br></br>
            Enter the file name of the dataset that you want to import. 
            </li>
            </ul>
            <div>
            <Admonition type="info" title="Note">
                <p>For more information, see <a href="https://docs.aws.amazon.com/IAM/latest/UserGuide/security-creds.html#access-keys-and-secret-access-keys">AWS credentials</a> and <a href="https://docs.aws.amazon.com/AmazonS3/latest/userguide/access-bucket-intro.html">Methods for accessing a bucket</a> in the AWS Documentation.</p>
            </Admonition>
            </div>
        </li>
        <li>
        Click <b>Continue</b>.
        <img src={import_s3_bucket} alt="import-s3-bucket" />
        </li>
        </ol>
    </TabItem>
    <TabItem value="azure datalake" label="Azure Datalake">
        <ol>
        <li>
        Enter values for the following fields:
            <ul>
            <li>
            <b>Datalake connection string: </b><br></br>
            Enter your Azure connection string to connect to Datalake storage.
            </li>
            <li>
            <b>Datalake container name: </b><br></br>
            Enter the name of the Azure Data Lake container where your dataset is stored, including the relative path to the file within the container. 
            </li>
            <li>
            <b>File name: </b><br></br>
            Specify the exact name of the file you want to import.
            </li>
            </ul>
        </li>
        <li>
        Click <b>Continue</b>.
        </li>
        </ol>
    </TabItem>
    <TabItem value="h2o-drive" label="H2O-Drive">
        <ol>
        <li>
        Select the dataset you want to upload from the list of datasets in H2O Drive.
        </li>
        <li>
        Click <b>Continue</b>.
        <img src={import_h2odrive_dataset} alt="import-h2odrive-dataset" />
        </li>
        </ol>
    </TabItem>
    <TabItem value="kaggle" label="Kaggle">
        <ol>
        <li>
        Enter values for the following fields:
            <ul>
            <li>
            <b>Kaggle API command: </b><br></br>
            Enter the Kaggle API command that you want to execute.
            </li>
            <li>
            <b>Kaggle username: </b><br></br>
            Your Kaggle username for API authentication
            </li>
            <li>
            <b>Kaggle secret key: </b><br></br>
            Your Kaggle secret key for API authentication.
            </li>
            </ul>
        </li>
        <li>
        Click <b>Continue</b>.
        <img src={import_kaggle_dataset} alt="import-kaggle-dataset" />
        </li>
        </ol>
    </TabItem>
    <TabItem value="hugging face" label="Hugging Face">
        <ol>
        <li>
        Enter values for the following fields:
            <ul>
            <li>
            <b>Hugging Face dataset: </b><br></br>
            Enter the name of the Hugging Face dataset.
            </li>
            <li>
            <b>Split: </b><br></br>
            Enter the specific data split you want to import (e.g., "train", "test").
            </li>
            <li>
            <b>Hugging Face API token (optional): </b><br></br>
            Enter your Hugging Face API token to authenticate access to private datasets or datasets with gated access.
            </li>
            </ul>
        </li>
        <li>
        Click <b>Continue</b>.
        </li>
        </ol>
    </TabItem>
    </Tabs>
    :::
 
## Configure dataset

Once you have successfully uploaded or imported your dataset, you can configure the dataset settings. Depending on the problem type, you may need to specify the following:

:::info Tip
You can upload a `.zip` file with both training and validation sets to avoid having to separately upload files.
:::

- **Dataset name:** <DatasetNameTooltip/>

- **Problem Type:** <ProblemTypeTooltip/>

- **Train Dataframe:** <TrainDataframeTooltip/>

- **Validation Dataframe:** <ValidationDataframeTooltip/>

- **System Column:** <SystemColumnTooltip/>

- **Prompt Column:** <PromptColumnTooltip/>

- **Rejected Prompt Column:** <RejectedPromptColumnTooltip/>

- #### **Answer Column:** 

  <AnswerColumnTooltip/>

- **Rejected Answer Column:** <RejectedAnswerColumnTooltip/>

- **Parent Id Column:** <ParentIdColumnTooltip/>

![configure-dataset](configure-dataset.png)

## Data validity check

H2O LLM Studio will provide a preview of the dataset input (sample questions) and output (sample answers) according to the content of the imported dataset. Review the text to ensure that the input and output is as intended, and then click **Continue**. 

## View dataset

You will now be redirected to the **View datasets** screen. You should be able to see the dataset you just imported listed on the screen. 

![view-dataset](view-imported-dataset.png)

For more information about viewing dataset summary and statistics, see [View and manage datasets](view-dataset)