Spaces:
Sleeping
Sleeping
File size: 8,545 Bytes
5caedb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
---
description: H2O LLM Studio provides a number of data connectors to support importing data from local or external sources and requires your data to be in a certain format for successful importing of data.
---
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
import Admonition from '@theme/Admonition';
import upload_dataset from './upload-dataset.png';
import upload_local_file from './upload-local-file.png';
import import_s3_bucket from './import-s3-bucket.png';
import import_kaggle_dataset from './import-kaggle-dataset.png';
import import_h2odrive_dataset from './import-h2o-drive-dataset.png';
import DatasetNameTooltip from '../../tooltips/experiments/_dataset-name.mdx';
import ProblemTypeTooltip from '../../tooltips/experiments/_problem-type.mdx';
import TrainDataframeTooltip from '../../tooltips/experiments/_train-dataframe.mdx';
import ValidationDataframeTooltip from '../../tooltips/experiments/_validation-dataframe.mdx';
import SystemColumnTooltip from '../../tooltips/experiments/_system-column.mdx';
import PromptColumnTooltip from '../../tooltips/experiments/_prompt-column.mdx';
import RejectedPromptColumnTooltip from '../../tooltips/experiments/_rejected-prompt-column.mdx';
import AnswerColumnTooltip from '../../tooltips/experiments/_answer-column.mdx';
import RejectedAnswerColumnTooltip from '../../tooltips/experiments/_rejected-answer-column.mdx';
import ParentIdColumnTooltip from '../../tooltips/experiments/_parent-id-column.mdx';
# Import a dataset
H2O LLM Studio provides a number of data connectors to support importing data from local or external sources and requires your data to be in a certain format for successful importing of data.
For more information, see [Supported data connectors and format](data-connectors-format).
## Import data
Follow the relevant steps below to import a dataset to H2O LLM Studio.
1. On the H2O LLM Studio left-navigation pane, click **Import dataset**.
2. Select the relevant **Source** (data connector) that you want to use from the dropdown list .
:::note Data sources
<Tabs className="unique-tabs">
<TabItem value="upload" label="Upload" default>
<ol>
<li>
Drag and drop the file, or click <b>Browse</b> and select the file you want to upload.
</li>
<li>
Click <b>Upload</b>.
<img src={upload_dataset} alt="upload-dataset" />
</li>
</ol>
</TabItem>
<TabItem value="local" label="Local">
<ol>
<li>
Enter the file path as the <b>File Location</b> or select the relevant local directory that the dataset is located in.
</li>
<li>
Click <b>Continue</b>.
<img src={upload_local_file} alt="upload-local-file" />
</li>
</ol>
</TabItem>
<TabItem value="aws" label="AWS S3">
<ol>
<li>
Enter values for the following fields:
<ul>
<li>
<b>S3 bucket name: </b> <br></br>
The name of the S3 bucket including the reletive file paths.
</li>
<li>
<b>AWS access key: </b><br></br>
The access key associated with your S3 bucket. This field is optional. If the S3 bucket is public, you can leave this empty for anonymous access.
</li>
<li>
<b>AWS access secret: </b><br></br>
The access secret associated with your S3 bucket. This field is optional. If the S3 bucket is public, you can leave this empty for anonymous access.
</li>
<li>
<b>File name: </b><br></br>
Enter the file name of the dataset that you want to import.
</li>
</ul>
<div>
<Admonition type="info" title="Note">
<p>For more information, see <a href="https://docs.aws.amazon.com/IAM/latest/UserGuide/security-creds.html#access-keys-and-secret-access-keys">AWS credentials</a> and <a href="https://docs.aws.amazon.com/AmazonS3/latest/userguide/access-bucket-intro.html">Methods for accessing a bucket</a> in the AWS Documentation.</p>
</Admonition>
</div>
</li>
<li>
Click <b>Continue</b>.
<img src={import_s3_bucket} alt="import-s3-bucket" />
</li>
</ol>
</TabItem>
<TabItem value="azure datalake" label="Azure Datalake">
<ol>
<li>
Enter values for the following fields:
<ul>
<li>
<b>Datalake connection string: </b><br></br>
Enter your Azure connection string to connect to Datalake storage.
</li>
<li>
<b>Datalake container name: </b><br></br>
Enter the name of the Azure Data Lake container where your dataset is stored, including the relative path to the file within the container.
</li>
<li>
<b>File name: </b><br></br>
Specify the exact name of the file you want to import.
</li>
</ul>
</li>
<li>
Click <b>Continue</b>.
</li>
</ol>
</TabItem>
<TabItem value="h2o-drive" label="H2O-Drive">
<ol>
<li>
Select the dataset you want to upload from the list of datasets in H2O Drive.
</li>
<li>
Click <b>Continue</b>.
<img src={import_h2odrive_dataset} alt="import-h2odrive-dataset" />
</li>
</ol>
</TabItem>
<TabItem value="kaggle" label="Kaggle">
<ol>
<li>
Enter values for the following fields:
<ul>
<li>
<b>Kaggle API command: </b><br></br>
Enter the Kaggle API command that you want to execute.
</li>
<li>
<b>Kaggle username: </b><br></br>
Your Kaggle username for API authentication
</li>
<li>
<b>Kaggle secret key: </b><br></br>
Your Kaggle secret key for API authentication.
</li>
</ul>
</li>
<li>
Click <b>Continue</b>.
<img src={import_kaggle_dataset} alt="import-kaggle-dataset" />
</li>
</ol>
</TabItem>
<TabItem value="hugging face" label="Hugging Face">
<ol>
<li>
Enter values for the following fields:
<ul>
<li>
<b>Hugging Face dataset: </b><br></br>
Enter the name of the Hugging Face dataset.
</li>
<li>
<b>Split: </b><br></br>
Enter the specific data split you want to import (e.g., "train", "test").
</li>
<li>
<b>Hugging Face API token (optional): </b><br></br>
Enter your Hugging Face API token to authenticate access to private datasets or datasets with gated access.
</li>
</ul>
</li>
<li>
Click <b>Continue</b>.
</li>
</ol>
</TabItem>
</Tabs>
:::
## Configure dataset
Once you have successfully uploaded or imported your dataset, you can configure the dataset settings. Depending on the problem type, you may need to specify the following:
:::info Tip
You can upload a `.zip` file with both training and validation sets to avoid having to separately upload files.
:::
- **Dataset name:** <DatasetNameTooltip/>
- **Problem Type:** <ProblemTypeTooltip/>
- **Train Dataframe:** <TrainDataframeTooltip/>
- **Validation Dataframe:** <ValidationDataframeTooltip/>
- **System Column:** <SystemColumnTooltip/>
- **Prompt Column:** <PromptColumnTooltip/>
- **Rejected Prompt Column:** <RejectedPromptColumnTooltip/>
- #### **Answer Column:**
<AnswerColumnTooltip/>
- **Rejected Answer Column:** <RejectedAnswerColumnTooltip/>
- **Parent Id Column:** <ParentIdColumnTooltip/>

## Data validity check
H2O LLM Studio will provide a preview of the dataset input (sample questions) and output (sample answers) according to the content of the imported dataset. Review the text to ensure that the input and output is as intended, and then click **Continue**.
## View dataset
You will now be redirected to the **View datasets** screen. You should be able to see the dataset you just imported listed on the screen.

For more information about viewing dataset summary and statistics, see [View and manage datasets](view-dataset) |