Spaces:
Sleeping
Sleeping
File size: 6,336 Bytes
5caedb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import os
import socket
from types import SimpleNamespace
import toml
from huggingface_hub.constants import _is_true
toml_root_dir = os.path.abspath(
os.path.join(os.path.dirname(os.path.abspath(__file__)), "../..")
)
app_toml_filename = os.path.join(toml_root_dir, "pyproject.toml")
toml_loaded = toml.load(app_toml_filename)
version = toml_loaded["project"]["version"]
def get_size(x):
try:
if x.endswith("TB"):
return float(x.replace("TB", "")) * (2**40)
if x.endswith("GB"):
return float(x.replace("GB", "")) * (2**30)
if x.endswith("MB"):
return float(x.replace("MB", "")) * (2**20)
if x.endswith("KB"):
return float(x.replace("KB", "")) * (2**10)
if x.endswith("B"):
return float(x.replace("B", ""))
return 2**31
except Exception:
return 2**31
try:
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
s.connect(("8.8.8.8", 80))
host = s.getsockname()[0]
s.close()
except OSError:
host = "localhost"
port = "10101"
url = f"http://{host}:{port}/"
if os.getenv("H2O_LLM_STUDIO_DEFAULT_LM_MODELS"):
default_causal_language_models = [
mdl.strip() for mdl in os.getenv("H2O_LLM_STUDIO_DEFAULT_LM_MODELS").split(",")
]
else:
default_causal_language_models = [
"h2oai/h2o-danube3-500m-base",
"h2oai/h2o-danube3-500m-chat",
"h2oai/h2o-danube3-4b-base",
"h2oai/h2o-danube3-4b-chat",
"h2oai/h2o-danube2-1.8b-base",
"h2oai/h2o-danube2-1.8b-chat",
"meta-llama/Llama-3.2-1B-Instruct",
"meta-llama/Llama-3.2-3B-Instruct",
"meta-llama/Meta-Llama-3.1-8B-Instruct",
"meta-llama/Meta-Llama-3.1-70B-Instruct",
"mistralai/Mistral-7B-v0.3",
"mistralai/Mistral-7B-Instruct-v0.2",
"google/gemma-2-2b-it",
"google/gemma-2-9b-it",
"microsoft/Phi-3-mini-4k-instruct",
"microsoft/Phi-3-medium-4k-instruct",
"Qwen/Qwen2-7B-Instruct",
"Qwen/Qwen2-72B-Instruct",
]
if os.getenv("H2O_LLM_STUDIO_DEFAULT_S2S_MODELS"):
default_sequence_to_sequence_models = [
mdl.strip() for mdl in os.getenv("H2O_LLM_STUDIO_DEFAULT_S2S_MODELS").split(",")
]
else:
default_sequence_to_sequence_models = [
"t5-small",
"t5-base",
"t5-large",
"google/flan-t5-small",
"google/flan-t5-base",
"google/flan-t5-large",
"google/flan-ul2",
]
default_cfg = {
"url": url,
"name": "H2O LLM Studio",
"version": version,
"github": "https://github.com/h2oai/h2o-llmstudio",
"min_experiment_disk_space": get_size(
os.getenv("MIN_DISK_SPACE_FOR_EXPERIMENTS", "2GB")
),
"allowed_file_extensions": os.getenv(
"ALLOWED_FILE_EXTENSIONS", ".zip,.csv,.pq,.parquet"
).split(","),
"llm_studio_workdir": f"{os.getenv('H2O_LLM_STUDIO_WORKDIR', os.getcwd())}",
"heap_mode": os.getenv("H2O_LLM_STUDIO_ENABLE_HEAP", "False") == "True",
"data_folder": "data/",
"output_folder": "output/",
"cfg_file": "text_causal_language_modeling_config",
"start_page": "home",
"problem_types": [
"text_causal_language_modeling_config",
"text_causal_classification_modeling_config",
"text_causal_regression_modeling_config",
"text_sequence_to_sequence_modeling_config",
"text_dpo_modeling_config",
],
"default_causal_language_models": default_causal_language_models,
"default_sequence_to_sequence_models": default_sequence_to_sequence_models,
"problem_categories": ["text"],
"dataset_keys": [
"train_dataframe",
"validation_dataframe",
"system_column",
"prompt_column",
"rejected_prompt_column",
"answer_column",
"rejected_answer_column",
"parent_id_column",
"id_column",
],
"dataset_trigger_keys": [
"train_dataframe",
"validation_dataframe",
"parent_id_column",
],
"dataset_extra_keys": [
"validation_strategy",
"data_sample",
"data_sample_choice",
],
"dataset_folder_keys": [
"train_dataframe",
"validation_dataframe",
],
"user_settings": {
"credential_saver": ".env File",
"default_aws_bucket_name": f"{os.getenv('AWS_BUCKET', 'bucket_name')}",
"default_aws_access_key": os.getenv("AWS_ACCESS_KEY_ID", ""),
"default_aws_secret_key": os.getenv("AWS_SECRET_ACCESS_KEY", ""),
"default_azure_conn_string": "",
"default_azure_container": "",
"default_kaggle_username": "",
"default_kaggle_secret_key": "",
"set_max_epochs": 50,
"set_max_batch_size": 256,
"set_max_num_classes": 100,
"set_max_max_length": 16384,
"set_max_gradient_clip": 10,
"set_max_lora_r": 256,
"set_max_lora_alpha": 256,
"gpu_used_for_download": "cuda:0",
"gpu_used_for_chat": 1,
"default_number_of_workers": 8,
"default_logger": "None",
"default_neptune_project": os.getenv("NEPTUNE_PROJECT", ""),
"default_neptune_api_token": os.getenv("NEPTUNE_API_TOKEN", ""),
"default_wandb_api_token": os.getenv("WANDB_API_KEY", ""),
"default_wandb_project": os.getenv("WANDB_PROJECT", ""),
"default_wandb_entity": os.getenv("WANDB_ENTITY", ""),
"default_huggingface_api_token": os.getenv("HF_TOKEN", ""),
"default_hf_hub_enable_hf_transfer": _is_true(
os.getenv("HF_HUB_ENABLE_HF_TRANSFER", "1")
),
"default_openai_azure": os.getenv("OPENAI_API_TYPE", "open_ai") == "azure",
"default_openai_api_token": os.getenv("OPENAI_API_KEY", ""),
"default_openai_api_base": os.getenv(
"OPENAI_API_BASE", "https://example-endpoint.openai.azure.com"
),
"default_openai_api_deployment_id": os.getenv(
"OPENAI_API_DEPLOYMENT_ID", "deployment-name"
),
"default_openai_api_version": os.getenv("OPENAI_API_VERSION", "2023-05-15"),
"default_gpt_eval_max": os.getenv("GPT_EVAL_MAX", 100),
"default_safe_serialization": True,
"delete_dialogs": True,
"chart_plot_max_points": 1000,
},
}
default_cfg = SimpleNamespace(**default_cfg)
|