Spaces:
Sleeping
Sleeping
File size: 23,521 Bytes
5caedb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 |
import codecs
import collections.abc
import logging
from typing import Any, Dict, List, Tuple, Union
import numpy as np
import pandas as pd
import torch
from torch.utils.data import Dataset
from llm_studio.src.datasets.conversation_chain_handler import ConversationChainHandler
from llm_studio.src.datasets.text_utils import get_tokenizer
logger = logging.getLogger(__name__)
class CustomDataset(Dataset):
"""Dataset for Causal Language modeling."""
def __init__(self, df: pd.DataFrame, cfg: Any, mode: str = "train"):
"""
Args:
df: input DataFrame
cfg: config with all the hyperparameters
mode: dataset mode. One of {"train", "validation"}
"""
self.cfg = cfg
self.mode = mode
self.df = df.copy()
self.tokenizer = get_tokenizer(self.cfg)
self.conversation_chain_handler = ConversationChainHandler(self.df, cfg)
def __len__(self) -> int:
return len(self.conversation_chain_handler)
def __getitem__(self, idx: int) -> Dict:
"""Reads a single text observation."""
input_text_dict = self.conversation_chain_handler[idx]
input_text_dict["systems"] = [
self.parse_system(self.cfg, system) for system in input_text_dict["systems"]
]
input_text_dict["prompts"] = [
self.parse_prompt(self.cfg, prompt) for prompt in input_text_dict["prompts"]
]
input_text_dict["answers"] = [
self.parse_answer(self.cfg, answer) for answer in input_text_dict["answers"]
]
sample = dict()
system_encoding, prompt_encodings, answer_encodings = self.get_encodings(
input_text_dict=input_text_dict
)
input_ids = torch.cat(
[
torch.cat([prompt_encoding, answer_encoding])
for prompt_encoding, answer_encoding in zip(
prompt_encodings, answer_encodings
)
]
)
sample.update(self.get_labels(prompt_encodings, answer_encodings))
sample.update(
self.pad_tokens(
input_ids,
attention_mask=torch.ones_like(input_ids),
max_length=self.cfg.tokenizer.max_length,
pad_token_id=self.tokenizer.pad_token_id,
)
)
# get answer encodings
sample.update(
self.pad_tokens(
answer_encodings[-1],
attention_mask=torch.ones_like(answer_encodings[-1]),
max_length=self.cfg.tokenizer.max_length,
pad_token_id=self.tokenizer.pad_token_id,
direction="right",
prefix="answer_",
)
)
# Remove last answer from encoding to create the prompt for inference
answer_encodings[-1] = torch.empty(0)
prompt_input_ids = torch.cat(
[
torch.cat([prompt_encoding, answer_encoding])
for prompt_encoding, answer_encoding in zip(
prompt_encodings, answer_encodings
)
]
)
sample.update(
self.pad_tokens(
prompt_input_ids,
attention_mask=torch.ones_like(prompt_input_ids),
max_length=self.cfg.tokenizer.max_length,
pad_token_id=self.tokenizer.pad_token_id,
prefix="prompt_",
)
)
return sample
@staticmethod
def parse_prompt(cfg: Any, prompt: str):
prompt = (
f"{codecs.decode(cfg.dataset.text_prompt_start, 'unicode_escape')}{prompt}"
)
if cfg.dataset.add_eos_token_to_prompt:
prompt += cfg.tokenizer._tokenizer_eos_token
prompt = (
f"{prompt}"
f"{codecs.decode(cfg.dataset.text_answer_separator, 'unicode_escape')}"
)
return prompt
@staticmethod
def parse_answer(cfg: Any, answer: str):
if cfg.dataset.add_eos_token_to_answer:
answer += cfg.tokenizer._tokenizer_eos_token
return answer
@staticmethod
def parse_system(cfg: Any, system: str):
# no system tokens if empty
if system == "":
return system
system = (
f"{codecs.decode(cfg.dataset.text_system_start, 'unicode_escape')}{system}"
)
if cfg.dataset.add_eos_token_to_system:
system += cfg.tokenizer._tokenizer_eos_token
return system
@staticmethod
def batch_to_device(
batch: Union[Dict, List, torch.Tensor], device: str
) -> Union[Dict, List, torch.Tensor, str]:
"""Function to send the batch to the device specified
Args:
batch: input batch
device: device to send the data to
Returns:
batch with the elements on the device specified
"""
if isinstance(batch, torch.Tensor):
return batch.to(device)
elif isinstance(batch, (list, tuple)) and all(
isinstance(item, str) for item in batch
):
# Do not move list of strings to device
return batch
elif isinstance(batch, collections.abc.Mapping):
return {
key: CustomDataset.batch_to_device(value, device)
for key, value in batch.items()
}
elif isinstance(batch, collections.abc.Sequence):
return [CustomDataset.batch_to_device(value, device) for value in batch]
else:
raise ValueError(f"Can not move {type(batch)} to device.")
@staticmethod
def preprocess_dataframe(df: pd.DataFrame, cfg: Any) -> pd.DataFrame:
"""
Preprocesses the input dataframe
Args:
df: the full training dataframe
cfg: config
Returns:
the processed dataframe
"""
def personalize(text):
text = text.replace("Open Assistant", cfg.dataset.chatbot_name)
text = text.replace("Open-Assistant", cfg.dataset.chatbot_name)
text = text.replace("open-assistant", cfg.dataset.chatbot_name)
text = text.replace("OpenAssistant", cfg.dataset.chatbot_name)
text = text.replace("open assistant", cfg.dataset.chatbot_name)
text = text.replace("Open Assistand", cfg.dataset.chatbot_name)
text = text.replace("Open Assitant", cfg.dataset.chatbot_name)
text = text.replace("Open Assistent", cfg.dataset.chatbot_name)
text = text.replace("Open Assisstant", cfg.dataset.chatbot_name)
text = text.replace("Open Assitent", cfg.dataset.chatbot_name)
text = text.replace("Open Assitiant", cfg.dataset.chatbot_name)
text = text.replace("Open Assistiant", cfg.dataset.chatbot_name)
text = text.replace("Open Assitan ", cfg.dataset.chatbot_name + " ")
text = text.replace("Open Assistan ", cfg.dataset.chatbot_name + " ")
text = text.replace("Open Asistant", cfg.dataset.chatbot_name)
text = text.replace("Open Assiant", cfg.dataset.chatbot_name)
text = text.replace("Assistant", cfg.dataset.chatbot_name)
text = text.replace("ChatGPT", cfg.dataset.chatbot_name)
text = text.replace("LAION AI", cfg.dataset.chatbot_author)
text = text.replace("LAION-AI", cfg.dataset.chatbot_author)
text = text.replace("LAION,", cfg.dataset.chatbot_author + ",")
text = text.replace("LAION.ai", cfg.dataset.chatbot_author)
text = text.replace("LAION.", cfg.dataset.chatbot_author + ".")
text = text.replace("LAION", cfg.dataset.chatbot_author)
text = text.replace("Laion AI", cfg.dataset.chatbot_author)
text = text.replace("OpenAI", cfg.dataset.chatbot_author)
text = text.replace("Open AI", cfg.dataset.chatbot_author)
text = text.replace("openai", cfg.dataset.chatbot_author)
text = text.replace("open ai", cfg.dataset.chatbot_author)
return text
if cfg.dataset.personalize:
for prompt_col in cfg.dataset.prompt_column:
df[prompt_col] = df[prompt_col].apply(personalize)
df[cfg.dataset.answer_column] = df[cfg.dataset.answer_column].apply(
personalize
)
return df
def get_train_collate_fn(self):
"""
Returns train batch collate function for the PyTorch Dataloader.
By default returns None that uses the default PyTorch collate
"""
return None
def get_validation_collate_fn(self):
"""
Return validation batch collate function for the PyTorch Dataloader.
By default returns None that uses the default PyTorch collate
"""
return None
def postprocess_batch_predictions(self, output: Dict) -> Dict:
if "predicted_answer_ids" in output.keys():
predicted_text = [
self.tokenizer.decode(ids, skip_special_tokens=True).strip()
for ids in output["predicted_answer_ids"]
]
output["predicted_text"] = np.array(predicted_text)
del output["predicted_answer_ids"]
return output
@staticmethod
def clean_output(
output: Dict,
cfg: Any,
):
output["predicted_text"] = output["predicted_text"].tolist()
for j in range(len(output["predicted_text"])):
curr_text = output["predicted_text"][j].strip()
for stop_token in cfg.tokenizer._stop_words:
if curr_text.find(stop_token) != -1:
curr_text = curr_text[: curr_text.find(stop_token)]
output["predicted_text"][j] = curr_text.strip()
return output
def postprocess_output(self, cfg, df: pd.DataFrame, output: Dict) -> Dict:
if not cfg.prediction.metric == "Perplexity":
output = self.clean_output(output, cfg)
output["target_text"] = self.conversation_chain_handler.answers
metric_func, _, _ = cfg.prediction.metric_class.get(cfg.prediction.metric)
if "GPT" in cfg.prediction.metric:
metrics, explanations = metric_func(
cfg,
output,
df,
raw_results=True,
)
output["explanations"] = explanations
else:
metrics = metric_func(
cfg,
output,
df,
)
output["metrics"] = metrics
return output
def format_output(
self, cfg, df: pd.DataFrame, output: Dict
) -> Tuple[Dict, pd.DataFrame]:
output = {
key: value
for key, value in output.items()
if key not in ["loss", "target", "losses"]
}
output.pop("target_text", None)
# in case limit_chained_samples is True, only last answer is predicted
end_conversation_ids = (
self.conversation_chain_handler.get_conversation_end_ids()
)
if "predicted_text" in output.keys():
output["predicted_text"] = np.array(output["predicted_text"])
if "logits" in output.keys():
output["logits"] = np.array(output["logits"].float())
if isinstance(cfg.dataset.prompt_column, tuple):
for col in cfg.dataset.prompt_column:
output[col] = df.loc[end_conversation_ids, col].values
else:
output[cfg.dataset.prompt_column] = df.loc[
end_conversation_ids, cfg.dataset.prompt_column
].values
if "predicted_text" in output.keys():
col_name = cfg.dataset.answer_column
if isinstance(col_name, list):
col_name = ", ".join(col_name)
df[f"pred_{col_name}"] = (
"NO ANSWER GENERATED. "
"ONLY LAST ANSWER OF A CONVERSATION IS PREDICTED."
)
df.loc[end_conversation_ids, f"pred_{col_name}"] = output["predicted_text"]
return output, df
@classmethod
def sanity_check(cls, df: pd.DataFrame, cfg: Any, mode: str = "train"):
"""
Quick check whether Dataframe and configurations are correctly set.
"""
if cfg.dataset.parent_id_column != "None":
assert (
cfg.dataset.id_column != cfg.dataset.parent_id_column
), "'Id Column' should be different from 'Parent column'"
if (
cfg.dataset.parent_id_column is not None
and cfg.dataset.parent_id_column in df.columns
and cfg.dataset.id_column in df.columns
):
assert (
df[cfg.dataset.parent_id_column] != df[cfg.dataset.id_column]
).all(), (
f"Parent id column:{cfg.dataset.parent_id_column}"
" is the same as id column for some rows"
)
assert (df[cfg.dataset.parent_id_column].fillna("") == "").sum() > 0, (
"Did not find any conversation chain. "
"Please ensure that some parent ids are empty."
"\n"
"Conversations are chained using parent id, "
"start conversation record should have empty parent id."
"\n"
f"Parent id column checked:{cfg.dataset.parent_id_column}"
)
assert cfg.dataset.answer_column in df.columns, (
f"Answer column {cfg.dataset.answer_column} not found in the "
f"{mode} DataFrame."
)
assert df.shape[0] == df[[cfg.dataset.answer_column]].dropna().shape[0], (
f"The {mode} DataFrame"
f" column {cfg.dataset.answer_column}"
" contains missing values."
)
if cfg.dataset.parent_id_column != "None":
assert (
cfg.dataset.id_column in df.columns
), "When using Parent Column, set 'Id Column' in the previous screen. "
if (
cfg.dataset.parent_id_column != "None"
and df[cfg.dataset.parent_id_column].notna().any()
):
# Comprehensive checks for conversation chaining
parent_id_list = df[cfg.dataset.parent_id_column].tolist()
id_list = df[cfg.dataset.id_column].tolist()
# Track if any valid parent_id is found in the id_list
found_valid_parent = False
# 1. Check if at least one parent_id element is present in id_list
for pid in parent_id_list:
if pid is not None and not pd.isna(pid) and pid in id_list:
found_valid_parent = True
break
# If no valid parent_id is found in the id_list, raise an error
if not found_valid_parent:
raise AssertionError(
"None of the Parent IDs in the 'Parent Id Column' were found "
"in the 'Id Column'. "
"Please ensure that at least one ID in 'Parent Id Column' "
"is present in the 'Id Column'. "
f"Checked 'Parent Id Column': '{cfg.dataset.parent_id_column}', "
f"and 'Id Column': '{cfg.dataset.id_column}'."
)
# 2. Check if all elements in id_list are unique
if len(id_list) != len(set(id_list)):
raise AssertionError("ID list contains duplicate values.")
# 3. Check if parent_id[i] is not the same as id_list[i] (self-referencing)
for i in range(len(id_list)):
if parent_id_list[i] == id_list[i]:
raise AssertionError(f"ID '{id_list[i]}' is self-referencing.")
# 4. Check if there is at least one root element (where parent_id is None)
if not (None in parent_id_list or pd.isna(parent_id_list).any()):
raise AssertionError(
"There must be at least one root element (with no parent). "
"Currently, all records have a parent."
)
# 5. Check for circular references
def find_ancestor(node, parent_map):
seen = set()
while node in parent_map:
if node in seen:
raise AssertionError(
f"Circular reference detected for ID '{node}'."
)
seen.add(node)
node = parent_map[node]
return False
parent_map = {
id_list[i]: parent_id_list[i]
for i in range(len(id_list))
if parent_id_list[i] is not None
}
for id_ in id_list:
find_ancestor(id_, parent_map)
def get_labels(self, prompt_encodings, answer_encodings):
labels = torch.cat(
[
torch.cat([prompt_encoding, answer_encoding])
for prompt_encoding, answer_encoding in zip(
prompt_encodings, answer_encodings
)
]
).clone()
if self.cfg.dataset.mask_prompt_labels:
masks = []
for idx, (prompt_encoding, answer_encoding) in enumerate(
zip(prompt_encodings, answer_encodings)
):
if (
not self.cfg.dataset.only_last_answer
or idx == len(answer_encodings) - 1
):
mask = [
torch.ones_like(prompt_encoding),
torch.zeros_like(answer_encoding),
]
else:
mask = [
torch.ones_like(prompt_encoding),
torch.ones_like(answer_encoding),
]
masks.append(torch.cat(mask))
masks = torch.cat(masks).to(torch.bool)
labels.masked_fill_(masks, -100)
if self.cfg.tokenizer.max_length < len(labels):
labels = labels[-self.cfg.tokenizer.max_length :]
sample = dict(labels=torch.full((self.cfg.tokenizer.max_length,), -100))
sample["labels"][-len(labels) :] = labels
return sample
def get_encodings(self, input_text_dict: Dict[str, List[str]]):
"""
Get encodings for a single conversation history.
Args:
input_text_dict: A dictionary containing the input text for a single sample.
Contains the keys "systems", "prompts", "answers".
System may be an empty string.
"""
encodings = [
self._get_sample_encoding(system, prompt, answer)
for idx, (system, prompt, answer) in enumerate(
zip(
input_text_dict["systems"],
input_text_dict["prompts"],
input_text_dict["answers"],
)
)
]
if self.mode == "train":
encodings = self.augment_data(encodings)
system_encoding = encodings[0][0]
prompt_encodings = [encoding[1] for encoding in encodings]
answer_encodings = [encoding[2] for encoding in encodings]
# concatenate system encoding with root prompt encoding
prompt_encodings[0] = torch.cat([system_encoding, prompt_encodings[0]])
return (
system_encoding,
prompt_encodings,
answer_encodings,
)
def augment_data(self, encodings):
parent_encodings = encodings[:-1]
# randomly skip parent
parent_encodings = [
encoding
for idx, encoding in enumerate(parent_encodings)
if np.random.random() > self.cfg.augmentation.skip_parent_probability
]
# randomly replace parent with another parent
if np.random.random() < self.cfg.augmentation.random_parent_probability:
idx = np.random.randint(len(self.conversation_chain_handler.prompts))
parent_encodings = [
self._get_sample_encoding(
self.parse_system(
self.cfg, self.conversation_chain_handler.systems[idx]
),
self.parse_prompt(
self.cfg, self.conversation_chain_handler.prompts[idx]
),
self.conversation_chain_handler.answers[idx],
)
] + parent_encodings[1:]
encodings = parent_encodings + [encodings[-1]]
return encodings
def _get_sample_encoding(self, system: str, prompt: str, answer: str) -> List:
if len(system) > 0:
system_encoding = self.encode(
self.tokenizer, system, self.cfg.tokenizer.max_length, "right"
)["input_ids"]
else:
system_encoding = torch.empty(0)
prompt_encoding = self.encode(
self.tokenizer, prompt, self.cfg.tokenizer.max_length, "left"
)["input_ids"]
answer_encoding = self.encode(
self.tokenizer, answer, self.cfg.tokenizer.max_length, "right"
)["input_ids"]
return [system_encoding, prompt_encoding, answer_encoding]
@staticmethod
def pad_tokens(
input_ids,
attention_mask,
max_length,
pad_token_id,
direction="left",
prefix="",
):
sample = {}
if max_length < len(input_ids):
logger.info(f"Input exceeds max_length of {max_length}, truncating sample.")
input_ids = input_ids[-max_length:]
attention_mask = attention_mask[-max_length:]
if len(input_ids) > 0:
if direction == "left":
sample[f"{prefix}input_ids"] = torch.full((max_length,), pad_token_id)
sample[f"{prefix}input_ids"][-len(input_ids) :] = input_ids
sample[f"{prefix}attention_mask"] = torch.zeros(max_length)
sample[f"{prefix}attention_mask"][-len(input_ids) :] = attention_mask
else:
sample[f"{prefix}input_ids"] = torch.full((max_length,), pad_token_id)
sample[f"{prefix}input_ids"][: len(input_ids)] = input_ids
sample[f"{prefix}attention_mask"] = torch.zeros(max_length)
sample[f"{prefix}attention_mask"][: len(input_ids)] = attention_mask
else:
# Pad everything if empty (continued pretraining)
sample[f"{prefix}input_ids"] = torch.full((max_length,), pad_token_id)
sample[f"{prefix}attention_mask"] = torch.zeros(max_length)
return sample
@staticmethod
def encode(tokenizer, text: str, max_length: int, truncation_side: str) -> Dict:
encodings = tokenizer(text, return_tensors="pt", add_special_tokens=False)
encodings["input_ids"] = encodings["input_ids"][0]
encodings["attention_mask"] = encodings["attention_mask"][0]
if truncation_side == "right":
encodings["input_ids"] = encodings["input_ids"][:max_length]
encodings["attention_mask"] = encodings["attention_mask"][:max_length]
else:
encodings["input_ids"] = encodings["input_ids"][-max_length:]
encodings["attention_mask"] = encodings["attention_mask"][-max_length:]
return encodings
|