File size: 9,453 Bytes
5caedb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import os
from abc import abstractmethod
from typing import Any, Callable, List, Optional, Sequence, Set, Tuple

from pydantic.dataclasses import dataclass


def _scan_dirs(dirname: str) -> List[str]:
    """
    Recursively scans a directory for subfolders.

    Args:
        dirname (str): The directory to scan.

    Returns:
        List[str]: A list of subfolder paths, with '/' appended to each path.
    """

    subfolders = [f.path for f in os.scandir(dirname) if f.is_dir()]
    for dirname in list(subfolders):
        subfolders.extend(_scan_dirs(dirname))
    subfolders = [x + "/" if x[-1] != "/" else x for x in subfolders]
    return subfolders


def _scan_files(
    dirname: str, extensions: Tuple[str, ...] = (".csv", ".pq", ".parquet", ".json")
) -> List[str]:
    """
    Scans a directory for files with given extension

    Excludes files starting with "__meta_info__".

    Args:
        dirname (str): The directory to scan.
        extensions (Tuple[str, ...]): File extensions to consider.

    Returns:
        List[str]: A sorted list of file paths matching the given extensions.
    """
    path_list = [
        os.path.join(dirpath, filename)
        for dirpath, _, filenames in os.walk(dirname)
        for filename in filenames
        if any(map(filename.__contains__, extensions))
        and not filename.startswith("__meta_info__")
    ]
    return sorted(path_list)


def strip_common_prefix(
    paths: Sequence[str], ignore_set: Set[str] = set()
) -> Tuple[str, ...]:
    """
    Strips the common prefix from all given paths.

    Args:
        paths (Sequence[str]): The paths to strip.
        ignore_set (Set[str]): Set of path names to ignore when computing the prefix.

    Returns:
        Tuple[str, ...]: A tuple of paths with common prefixes removed.
    """

    paths_to_check = [
        os.path.split(os.path.normpath(path))[0]
        for path in paths
        if path not in ignore_set
    ]

    if len(paths_to_check) == 0:
        return tuple(paths)

    prefix = os.path.commonpath(paths_to_check)
    stripped = tuple(
        [
            path if path in ignore_set else os.path.relpath(path, prefix)
            for path in paths
        ]
    )

    return stripped


class Value:
    """Base class for value types."""

    pass


@dataclass
class Number:
    """
    Represents a numeric range for a setting with optional constraints.

    Attributes:
        min (float | int): Minimum allowed value. Must be less than or equal to `max`.
        step (float | int]): Step size for value increments
        max (float | None): Maximum allowed value. Optional.
            If provided, the UI component will be rendered as a slider. Otherwise as \
                a spinbox.
    """

    min: float | int
    step: float | int
    max: Optional[float | int] = None

    def __post_init__(self):
        if self.max is not None and self.min > self.max:
            raise ValueError(
                f"Expected `min <= max`, got min={self.min} > max={self.max}"
            )


@dataclass
class String:
    """
    Represents possible string values for a setting with optional constraints.

    Attributes:
        values (Tuple[str, ...] | Tuple[Tuple[str, str], ...]):
            Possible values for the string.
            - a tuple of tuples (value, name)
            - a tuple of strings. In that case the value will be used for name and value
        allow_custom (bool): Whether custom values are allowed. This will render a \
            combobox. If False (default), a dropdown will be rendered.
        placeholder (Optional[str]): Placeholder text for input fields.
    """

    values: Tuple[str, ...] | Tuple[Tuple[str, str], ...]
    allow_custom: bool = False
    placeholder: Optional[str] = None


class DatasetValue:
    """Base class for dataset-related values."""

    @abstractmethod
    def get_value(
        self, dataset: Any, value: Any, type_annotation: type
    ) -> Tuple[String, Any]:
        """
        Abstract method to get the value for a dataset.

        Args:
            dataset (Any): The dataset object.
            value (Any): The current value.
            type_annotation (type): The expected type of the value.

        Returns:
            Tuple[String, Any]: A tuple containing the String object and the value.
        """
        raise NotImplementedError

    @staticmethod
    def _compute_current_values(
        current_values: List[str],
        possible_values: List[str],
        prefer_with: Optional[Callable[[str], bool]] = None,
    ) -> List[str]:
        """
        Compute current values based on possible values and preferences.

        This method does not handle duplicate values and raises an error if either \
            `current_values` or `possible_values` contain duplicates.

        Args:
            current_values (List[str]): The preliminary current values.
            possible_values (List[str]): All possible values.
            prefer_with (Optional[Callable[[str], bool]]): Function determining which \
                values to prefer as default.

        Returns:
            List[str]: A list of computed current values.

        Raises:
            ValueError: If either `current_values` or `possible_values` contain \
                duplicate
        """

        if len(set(current_values)) != len(current_values):
            raise ValueError("Duplicate values in `current_values`")

        if len(set(possible_values)) != len(possible_values):
            raise ValueError("Duplicate values in `possible_values`")

        if len(possible_values) == 0:
            return [""]

        # allow only values which are in the possible values
        current_values = list(
            filter(lambda value: value in possible_values, current_values)
        )

        if len(current_values) == 0:
            # if the values are empty, take all the values where `prefer_with` is true
            for c in possible_values:
                if prefer_with is not None and prefer_with(c):
                    current_values.append(c)

            # if they are still empty, just take the first possible value
            if len(current_values) == 0:
                current_values = [possible_values[0]]

        return current_values


@dataclass
class Files(DatasetValue):
    """
    Represents a selection of files from a dataset.

    Used to select a file from a dataset for e.g. `train_dataframe`.

    Attributes:
        add_none (bool): Whether to add a "None" option.
        prefer_with (Optional[Callable[[str], bool]]): Function to determine preferred \
            values.
        prefer_none (bool): Whether to prefer "None" as the default option.
    """

    add_none: bool = False
    prefer_with: Optional[Callable[[str], bool]] = None
    # For the case where no match found, whether to prioritize
    # selecting any file or selecting no file
    prefer_none: bool = True

    def get_value(
        self, dataset: Any, value: Any, type_annotation: type
    ) -> Tuple[String, Any]:
        """
        Get the value for file selection.

        Args:
            dataset (Any): The dataset object.
            value (Any): The current value.
            type_annotation (type): The expected type of the value.

        Returns:
            Tuple[String, Any]: Tuple containing the String object and the current \
                value.
        """
        if dataset is None:
            return String(tuple()), value

        available_files = _scan_files(dataset["path"])
        if self.add_none is True:
            if self.prefer_none:
                available_files.insert(0, "None")
            else:
                available_files.insert(len(available_files), "None")

        if isinstance(value, str):
            value = [value]

        value = DatasetValue._compute_current_values(
            value, available_files, self.prefer_with
        )

        return (
            String(
                tuple(
                    zip(
                        available_files,
                        strip_common_prefix(available_files, ignore_set={"None"}),
                    )
                )
            ),
            value if type_annotation == Tuple[str, ...] else value[0],
        )


@dataclass
class Columns(DatasetValue):
    """
    Represents a selection of columns from a dataset.

    Used to select a column from a dataset for e.g. `prompt_column`.

    Attributes:
        add_none (bool): Whether to add a "None" option.
        prefer_with (Optional[Callable[[str], bool]]): Function to determine preferred \
            values.
    """

    add_none: bool = False
    prefer_with: Optional[Callable[[str], bool]] = None

    def get_value(
        self, dataset: Any, value: Any, type_annotation: type
    ) -> Tuple[String, Any]:
        if dataset is None:
            return String(tuple()), value

        try:
            columns = list(dataset["dataframe"].columns)
        except KeyError:
            columns = []

        if self.add_none is True:
            columns.insert(0, "None")

        if isinstance(value, str):
            value = [value]
        if value is None:
            value = [columns[0]]

        value = DatasetValue._compute_current_values(value, columns, self.prefer_with)

        return (
            String(tuple(columns)),
            value if type_annotation == Tuple[str, ...] else value[0],
        )