Spaces:
Sleeping
Sleeping
File size: 13,201 Bytes
5caedb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
import time
from unittest import mock
from unittest.mock import MagicMock
import pandas as pd
import pytest
from llm_studio.app_utils.default_datasets import (
prepare_default_dataset_causal_language_modeling,
)
from llm_studio.src.datasets.conversation_chain_handler import ConversationChainHandler
@pytest.fixture
def df():
return pd.DataFrame(
{
"id": ["id1", "id2", "id3", "id4", "x1", "x2", "x3", "x4"],
"parent_id": ["None", "id1", "id2", "id3", "None", "x1", "x2", "x3"],
"answer": [
"answer1",
"answer2",
"answer3",
"answer4",
"a1",
"a2",
"a3",
"a4",
],
"system": [
"system1",
"system2",
"system3",
"system4",
"s1",
"s2",
"s3",
"s4",
],
"prompt": [
"prompt1",
"prompt2",
"prompt3",
"prompt4",
"p1",
"p2",
"p3",
"p4",
],
}
)
@pytest.fixture
def df_short():
return pd.DataFrame(
{
"id": ["id1", "id2", "id3", "id4"],
"parent_id": ["None", "id1", "id2", "id3"],
"answer": ["answer1", "answer2", "answer3", "answer4"],
"system": ["system1", "system2", "system3", "system4"],
"prompt": ["prompt1", "prompt2", "prompt3", "prompt4"],
}
)
@pytest.fixture
def cfg():
cfg = MagicMock()
cfg.dataset.parent_id_column = "parent_id"
cfg.dataset.id_column = "id"
cfg.dataset.system_column = "system"
cfg.dataset.prompt_column = "prompt"
cfg.dataset.answer_column = "answer"
cfg.dataset.limit_chained_samples = True
return cfg
def test_conversation_chain_handler(cfg, df):
handler = ConversationChainHandler(df, cfg)
assert len(handler) == 2, len(handler)
data = handler[0]
assert data == {
"prompts": ["prompt1", "prompt2", "prompt3", "prompt4"],
"answers": ["answer1", "answer2", "answer3", "answer4"],
"systems": ["system1", "system2", "system3", "system4"],
}
data = handler[1]
assert data == {
"prompts": ["p1", "p2", "p3", "p4"],
"answers": ["a1", "a2", "a3", "a4"],
"systems": ["s1", "s2", "s3", "s4"],
}
def test_chained_samples_disabled(df_short, cfg):
cfg.dataset.limit_chained_samples = False
cfg.dataset.parent_id_column = "None"
handler = ConversationChainHandler(df_short, cfg)
assert len(handler) == 4
for i in range(4):
assert handler[i] == {
"prompts": [f"prompt{i + 1}"],
"answers": [f"answer{i + 1}"],
"systems": [f"system{i + 1}"],
}
def test_incomplete_chained_samples(cfg, df_short):
cfg.dataset.limit_chained_samples = False
handler = ConversationChainHandler(df_short, cfg)
assert handler.conversation_chain_ids == [[0], [0, 1], [0, 1, 2], [0, 1, 2, 3]]
assert len(handler) == 4
for i in range(4):
assert handler[i] == {
"prompts": [f"prompt{j + 1}" for j in range(i + 1)],
"answers": [f"answer{j + 1}" for j in range(i + 1)],
"systems": [f"system{j + 1}" for j in range(i + 1)],
}
def test_get_conversation_ids():
# test the get_conversation_ids method - normal case
conv_ids = ConversationChainHandler.get_conversation_ids(
{"id2": "id1", "id3": "id2", "id4": "id3"}, "id4"
)
assert conv_ids == ["id1", "id2", "id3", "id4"]
# test the get_conversation_ids method - circular case, should raise ValueError
with pytest.raises(ValueError):
ConversationChainHandler.get_conversation_ids(
{"id1": "id4", "id2": "id1", "id3": "id2", "id4": "id3"}, "id4"
)
@pytest.fixture
def df_with_nan():
# mapping is
# a1 -> " " -> -inf -> 1234567890 -> "1234567890" -> "x1" -> 1 -> 2 -> 3 -> 4
# a2
# a3
# a4
return pd.DataFrame(
{
"id": [
"a1",
" ",
"-inf",
1234567890,
"1234567890",
"x1",
1,
2,
3.0,
4.0,
"a2",
"a3",
"a4",
],
"parent_id": [
" ", # valid
"-inf", # valid
1234567890, # valid
"1234567890", # valid, different type
"x1", # valid
1.0, # valid, needs to map to the int value
2.0, # valid, needs to map to the int value
3, # valid, needs to map to the float value
4, # valid, needs to map to the float value
float("nan"), # should be ignored
"None", # should be ignored
None, # should be ignored
float("inf"), # should be ignored
],
"answer": [f"answer{i + 1}" for i in range(13)],
"system": [f"system{i + 1}" for i in range(13)],
"prompt": [f"prompt{i + 1}" for i in range(13)],
}
)
def test_conversation_chain_handles_nan_parent_ids(df_with_nan, cfg):
handler = ConversationChainHandler(df_with_nan, cfg)
assert handler.conversation_chain_ids == [
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0],
[10],
[11],
[12],
]
assert len(handler) == 4
assert handler[0] == {
"prompts": [
"prompt10",
"prompt9",
"prompt8",
"prompt7",
"prompt6",
"prompt5",
"prompt4",
"prompt3",
"prompt2",
"prompt1",
],
"answers": [
"answer10",
"answer9",
"answer8",
"answer7",
"answer6",
"answer5",
"answer4",
"answer3",
"answer2",
"answer1",
],
"systems": [
"system10",
"system9",
"system8",
"system7",
"system6",
"system5",
"system4",
"system3",
"system2",
"system1",
],
}
assert handler[1] == {
"prompts": ["prompt11"],
"answers": ["answer11"],
"systems": ["system11"],
}
assert handler[2] == {
"prompts": ["prompt12"],
"answers": ["answer12"],
"systems": ["system12"],
}
assert handler[3] == {
"prompts": ["prompt13"],
"answers": ["answer13"],
"systems": ["system13"],
}
def test_conversation_chain_handler_filters_parent_ids(df_with_nan, cfg):
for i in range(len(df_with_nan)):
df_with_nan_1 = df_with_nan.copy()
df_with_nan_1.loc[i, "parent_id"] = "MISSING"
handler_1 = ConversationChainHandler(df_with_nan_1, cfg)
df_with_nan_2 = df_with_nan.copy()
df_with_nan_2.loc[i, "parent_id"] = "None"
handler_2 = ConversationChainHandler(df_with_nan_2, cfg)
assert handler_1.conversation_chain_ids == handler_2.conversation_chain_ids
def test_oasst_conversation_chain_handler(tmp_path):
"""
Test conversation chain handler on default OASST dataset.
"""
df = prepare_default_dataset_causal_language_modeling(tmp_path)
cfg = mock.MagicMock()
cfg.dataset.prompt_column = "instruction"
cfg.dataset.answer_column = "output"
cfg.dataset.parent_id_column = "parent_id"
cfg.dataset.id_column = "id"
cfg.dataset.system_column = "None"
for limit_chained_samples in [False, True]:
cfg.dataset.limit_chained_samples = limit_chained_samples
conversation_chain_handler = ConversationChainHandler(df, cfg=cfg)
for conversation_chain_ids in conversation_chain_handler.conversation_chain_ids:
parent_idx = conversation_chain_ids[0]
for idx in conversation_chain_ids[1:]:
df.loc[idx, "parent_id"] = parent_idx
parent_idx = idx
cfg.dataset.limit_chained_samples = False
conversation_chain_handler = ConversationChainHandler(df, cfg=cfg)
prompts = [
"I am building a mechanical keyboard from scratch. I already have the working hardware and am in the process of configuring the firmware. However i find that the qwertz layout gives me wrist pain. I will use the keyboard for writing in english, german and french, and for coding mainly.\nWhat keyboard layout would be best suited for me?", # noqa: E501
"what is the advantage of BvoFrak and Bépo, over Azerty that is more common in France.", # noqa: E501
"Is there any information on how long it takes a typical person to adopt the BvoFrak or Bépo layouts? I worry that the time investment may be a concern, or that I may make more mistakes when programming during the transition period.", # noqa: E501
]
answers = [
"Generally, it seems that Neo layout may be what you are looking for.\nHere are some keyboard layouts for various use cases: \nFor French: BvoFrak, Bépo\nFor German: Neo, AdNW\nFor English: DHIATENSOR, Dvorak,\nFor programing: Programmer Dvorak, Evolved, Capewell, QGMLWY, Arensito\nNote that while layout may contribute to wrist pain, other factors like the angle of the keyboard, key spacing (vertical, horizontal, and depth), more may also be contributing factors. Learning a new layout takes time and effort, and may make it more difficult to type on other keyboards.", # noqa: E501
"BvoFrak and Bépo are alternative French keyboard layouts that aim to improve on the traditional Azerty layout. Some of the claimed advantages include:\n\n- BvoFrak aims to minimize finger movement and optimize typing efficiency. It groups letters by finger positions rather than alphabetic order.\n- Bépo aims to allow for faster typing of common French letters and letter combinations. It also groups letters by finger positions and makes some other rearrangements to commonly used keys.\n- Both BvoFrak and Bépo proponents argue that Azerty is inefficient and optimized for typewriters, not modern keyboards and typing. However, Azerty is deeply entrenched and the alternative layouts have not achieved widespread adoption.\n\nSo the potential advantages are increased typing efficiency and comfort, but the alternative layouts have to overcome the momentum of the established Azerty layout. Whether the claimed advantages hold up in practice for most typists is unclear without much broader adoption of the alternative layouts.", # noqa: E501
"The time it takes to learn a new keyboard layout can vary depending on several factors, including the individual's previous typing experience and the amount of time they can devote to practice. However, on average, it can take between 2-4 weeks to become proficient in a new keyboard layout.\n\nDuring the transition period, it's natural to make more mistakes when typing, especially when programming or using special characters. It's important to be patient with yourself and allow yourself time to adjust to the new layout. With practice, the new layout will become more natural and comfortable to use, and the speed and accuracy of your typing will improve.\n\nUltimately, the investment of time and effort required to learn a new keyboard layout is a personal decision, and it's important to consider the potential benefits and drawbacks before making a decision. While there may be some initial challenges, many people find that the improved ergonomics and efficiency of a new keyboard layout make the investment well worth it in the long run.", # noqa: E501
]
systems = ["", "", ""]
sample = conversation_chain_handler[
10719
] # 10719 == sample with 3 round conversation
assert sample["prompts"] == prompts
assert sample["answers"] == answers
assert sample["systems"] == systems
def test_oasst_conversation_chain_handler_is_fast(tmp_path):
df_oasst = prepare_default_dataset_causal_language_modeling(tmp_path)
cfg = mock.MagicMock()
cfg.dataset.prompt_column = "instruction"
cfg.dataset.answer_column = "output"
cfg.dataset.parent_id_column = "parent_id"
cfg.dataset.id_column = "id"
cfg.dataset.system_column = "None"
cfg.dataset.limit_chained_samples = True
dfs = []
for i in range(50):
df = df_oasst.copy()
df["parent_id"] = df["parent_id"].apply(
lambda x: x + str(i) if x is not None else x
)
df["id"] = df["id"].apply(lambda x: x + str(i))
dfs.append(df)
df = pd.concat(dfs).reset_index(drop=True)
assert len(df) > 400_000
t_0 = time.time()
conversation_chain_handler = ConversationChainHandler(df, cfg)
_ = [conversation for conversation in conversation_chain_handler]
t_1 = time.time()
assert t_1 - t_0 < 10 # shouldn't take longer than ~5 seconds
|