---
description: All the settings needed for creating an experiment are explored in this page.
---
import GeneralSettingsDataset from '../../tooltips/experiments/_dataset.mdx';
import GeneralSettingsProblemType from '../../tooltips/experiments/_problem-type.mdx';
import GSImportConfigFromYaml from '../../tooltips/experiments/_import-config-from-yaml.mdx';
import GSExperimentName from '../../tooltips/experiments/_experiment-name.mdx';
import GSLLMBackbone from '../../tooltips/experiments/_llm-backbone.mdx';
import DSTrainDataframe from '../../tooltips/experiments/_train-dataframe.mdx';
import DSvalidationStrategy from '../../tooltips/experiments/_validation-strategy.mdx';
import DSvalidationSize from '../../tooltips/experiments/_validation-size.mdx';
import DSdataSample from '../../tooltips/experiments/_data-sample.mdx';
import DSpromptColumn from '../../tooltips/experiments/_prompt-column.mdx';
import DSPromptColumnSeparator from '../../tooltips/experiments/_prompt-column-separator.mdx';
import DSsystemColumn from '../../tooltips/experiments/_system-column.mdx';
import DSanswerColumn from '../../tooltips/experiments/_answer-column.mdx';
import DSparentIdColumn from '../../tooltips/experiments/_parent-id-column.mdx';
import DStextPromptStart from '../../tooltips/experiments/_text-prompt-start.mdx';
import DStextAnswerSeparator from '../../tooltips/experiments/_text-answer-separator.mdx';
import DSaddEosTokentoprompt from '../../tooltips/experiments/_add-eos-token-to-prompt.mdx';
import DSaddEosTokentoanswer from '../../tooltips/experiments/_add-eos-token-to-answer.mdx';
import DSmaskPromptlabels from '../../tooltips/experiments/_mask-prompt-labels.mdx';
import TSmaxLength from '../../tooltips/experiments/_max-length.mdx';
import TSaddpromptanswertokens from '../../tooltips/experiments/_add-prompt-answer-tokens.mdx';
import TSpaddingQuantile from '../../tooltips/experiments/_padding-quantile.mdx';
import ASBackboneDtype from '../../tooltips/experiments/_backbone-dtype.mdx';
import ASGradientcheckpointing from '../../tooltips/experiments/_gradient-checkpointing.mdx';
import ASintermediateDropout from '../../tooltips/experiments/_intermediate-dropout.mdx';
import ASpretrainedWeights from '../../tooltips/experiments/_pretrained-weights.mdx';
import TSoptimizer from '../../tooltips/experiments/_optimizer.mdx';
import TSlossfunction from '../../tooltips/experiments/_loss-function.mdx';
import TSlearningRate from '../../tooltips/experiments/_learning-rate.mdx';
import TSdifferentialLearningRateLayers from '../../tooltips/experiments/_differential-learning-rate-layers.mdx';
import TSfreezeLayers from '../../tooltips/experiments/_freeze-layers.mdx';
import TSattentionImplementation from '../../tooltips/experiments/_attention-implementation.mdx';
import TSbatchSize from '../../tooltips/experiments/_batch-size.mdx';
import TSepochs from '../../tooltips/experiments/_epochs.mdx';
import TSschedule from '../../tooltips/experiments/_schedule.mdx';
import TSminLearningRateRatio from '../../tooltips/experiments/_min-learning-rate-ratio.mdx';
import TSwarmupEpochs from '../../tooltips/experiments/_warmup-epochs.mdx';
import TSweightDecay from '../../tooltips/experiments/_weight-decay.mdx';
import TSGradientclip from '../../tooltips/experiments/_gradient-clip.mdx';
import TSgradAccumulation from '../../tooltips/experiments/_grad-accumulation.mdx';
import TSlora from '../../tooltips/experiments/_lora.mdx';
import TSuseDora from '../../tooltips/experiments/_use-dora.mdx';
import TSloraR from '../../tooltips/experiments/_lora-r.mdx';
import TSloraAlpha from '../../tooltips/experiments/_lora-alpha.mdx';
import TSloraDropout from '../../tooltips/experiments/_lora-dropout.mdx';
import TSuseRSlora from '../../tooltips/experiments/_use-rslora.mdx';
import TSloraTargetModules from '../../tooltips/experiments/_lora-target-modules.mdx';
import TSloraUnfreezeLayers from '../../tooltips/experiments/_lora-unfreeze-layers.mdx';
import TSsavecheckpoint from '../../tooltips/experiments/_save-checkpoint.mdx';
import TSevaluationepochs from '../../tooltips/experiments/_evaluation-epochs.mdx';
import TSevaluationbeforetraining from '../../tooltips/experiments/_evaluate-before-training.mdx';
import TStrainvalidationdata from '../../tooltips/experiments/_train-validation-data.mdx';
import AStokenmaskprobability from '../../tooltips/experiments/_token-mask-probability.mdx';
import ASskipParentprobability from '../../tooltips/experiments/_skip-parent-probability.mdx';
import ASrandomparentprobability from '../../tooltips/experiments/_random-parent-probability.mdx';
import ASneftunenoisealpha from '../../tooltips/experiments/_neftune_noise_alpha.mdx';
import PSmetric from '../../tooltips/experiments/_metric.mdx';
import PSmetricgptmodel from '../../tooltips/experiments/_metric-gpt-model.mdx';
import PSmetricgpttemplate from '../../tooltips/experiments/_metric-gpt-template.mdx';
import PSminlengthinference from '../../tooltips/experiments/_min-length-inference.mdx';
import PSmaxlengthinference from '../../tooltips/experiments/_max-length-inference.mdx';
import PSbatchsizeinference from '../../tooltips/experiments/_batch-size-inference.mdx';
import PSdosample from '../../tooltips/experiments/_do-sample.mdx';
import PSnumbeams from '../../tooltips/experiments/_num-beams.mdx';
import PStemperature from '../../tooltips/experiments/_temperature.mdx';
import PSrepetitionpenalty from '../../tooltips/experiments/_repetition-penalty.mdx';
import PSstoptokens from '../../tooltips/experiments/_stop-tokens.mdx';
import PStopk from '../../tooltips/experiments/_top-k.mdx';
import PStopp from '../../tooltips/experiments/_top-p.mdx';
import ESgpus from '../../tooltips/experiments/_gpus.mdx';
import ESmixedprecision from '../../tooltips/experiments/_mixed-precision.mdx';
import EScompilemodel from '../../tooltips/experiments/_compile-model.mdx';
import ESfindunusedparameters from '../../tooltips/experiments/_find-unused-parameters.mdx';
import EStrustremotecode from '../../tooltips/experiments/_trust-remote-code.mdx';
import EShuggingfacebranch from '../../tooltips/experiments/_huggingface-branch.mdx';
import ESnumofworkers from '../../tooltips/experiments/_number-of-workers.mdx';
import ESseed from '../../tooltips/experiments/_seed.mdx';
import LSlogstepsize from '../../tooltips/experiments/_log-step-size.mdx';
import LSlogallranks from '../../tooltips/experiments/_log-all-ranks.mdx';
import LSlogger from '../../tooltips/experiments/_logger.mdx';
import LSneptuneproject from '../../tooltips/experiments/_neptune-project.mdx';
import LSwandbproject from '../../tooltips/experiments/_wandb-project.mdx';
import LSwandbentity from '../../tooltips/experiments/_wandb-entity.mdx';
import NumClasses from '../../tooltips/experiments/_num-classes.mdx';
# Experiment settings
The settings for creating an experiment are grouped into the following sections:
- [General settings](#general-settings)
- [Dataset settings](#dataset-settings)
- [Tokenizer settings](#tokenizer-settings)
- [Architecture settings](#architecture-settings)
- [Training settings](#training-settings)
- [Augmentation settings](#augmentation-settings)
- [Prediction settings](#prediction-settings)
- [Environment settings](#environment-settings)
- [Logging settings](#logging-settings)
The settings under each category are listed and described below.
## General settings
### Dataset
### Problem type
### Import config from YAML
### Experiment name
### LLM backbone
## Dataset settings
### Train dataframe
### Validation strategy
### Validation size
### Data sample
### System column
### Prompt column
### Prompt column separator
### Answer column
### Parent ID column
### ID column
### Text prompt start
### Text answer separator
### Add EOS token to prompt
### Add EOS token to answer
### Mask prompt labels
### Num classes
The **Num classes** field should be set to the total number of classes in the [answer column](../datasets/import-dataset.md#answer-column) of the dataset.
## Tokenizer settings
### Max length
### Add prompt answer tokens
### Padding quantile
## Architecture settings
### Backbone Dtype
### Gradient Checkpointing
### Intermediate dropout
### Pretrained weights
## Training settings
### Loss function
For multiclass classification problems, set the loss function to **Cross-entropy**.
### Optimizer
### Learning rate
### Differential learning rate layers
By default, H2O LLM Studio applies **Differential learning rate Layers**, with the learning rate for the `classification_head` being 10 times smaller than the learning rate for the rest of the model.
### Freeze layers
### Attention Implementation
### Batch size
### Epochs
### Schedule
### Min Learning Rate Ratio
### Warmup epochs
### Weight decay
### Gradient clip
### Grad accumulation
### Lora
### Use Dora
### Lora R
### Lora Alpha
### Lora dropout
### Use RS Lora
### Lora target modules
### Lora unfreeze layers
### Save checkpoint
### Evaluation epochs
### Evaluate before training
### Train validation data
## Augmentation settings
### Token mask probability
### Skip parent probability
### Random parent probability
### Neftune noise alpha
## Prediction settings
### Metric
### Metric GPT model
### Metric GPT template
### Min length inference
### Max length inference
### Batch size inference
### Do sample
### Num beams
### Temperature
### Repetition penalty
### Stop tokens
### Top K
### Top P
## Environment settings
### GPUs
### Mixed precision
### Compile model
### Find unused parameters
### Trust remote code
### Hugging Face branch
### Number of workers
### Seed
## Logging settings
### Log step size
### Log all ranks
### Logger
### Neptune project
### W&B project
### W&B entity