Spaces:
Sleeping
Sleeping
populate.py 삭제
Browse files- src/populate.py +0 -56
src/populate.py
DELETED
@@ -1,56 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import os
|
3 |
-
|
4 |
-
import pandas as pd
|
5 |
-
|
6 |
-
from src.display.formatting import has_no_nan_values, make_clickable_model
|
7 |
-
from src.display.utils import AutoEvalColumn, EvalQueueColumn
|
8 |
-
from src.leaderboard.read_evals import get_raw_eval_results
|
9 |
-
|
10 |
-
|
11 |
-
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
12 |
-
raw_data = get_raw_eval_results(results_path, requests_path)
|
13 |
-
all_data_json = [v.to_dict() for v in raw_data]
|
14 |
-
|
15 |
-
df = pd.DataFrame.from_records(all_data_json)
|
16 |
-
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
17 |
-
df = df[cols].round(decimals=2)
|
18 |
-
|
19 |
-
# filter out if any of the benchmarks have not been produced
|
20 |
-
df = df[has_no_nan_values(df, benchmark_cols)]
|
21 |
-
return raw_data, df
|
22 |
-
|
23 |
-
|
24 |
-
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
25 |
-
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
|
26 |
-
all_evals = []
|
27 |
-
|
28 |
-
for entry in entries:
|
29 |
-
if ".json" in entry:
|
30 |
-
file_path = os.path.join(save_path, entry)
|
31 |
-
with open(file_path) as fp:
|
32 |
-
data = json.load(fp)
|
33 |
-
|
34 |
-
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
|
35 |
-
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
36 |
-
|
37 |
-
all_evals.append(data)
|
38 |
-
elif ".md" not in entry:
|
39 |
-
# this is a folder
|
40 |
-
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")]
|
41 |
-
for sub_entry in sub_entries:
|
42 |
-
file_path = os.path.join(save_path, entry, sub_entry)
|
43 |
-
with open(file_path) as fp:
|
44 |
-
data = json.load(fp)
|
45 |
-
|
46 |
-
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
|
47 |
-
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
48 |
-
all_evals.append(data)
|
49 |
-
|
50 |
-
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
|
51 |
-
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
|
52 |
-
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
|
53 |
-
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
|
54 |
-
df_running = pd.DataFrame.from_records(running_list, columns=cols)
|
55 |
-
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
|
56 |
-
return df_finished[cols], df_running[cols], df_pending[cols]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|