Spaces:
Sleeping
Sleeping
탭 정리
Browse files- app.py +20 -108
- src/display/utils.py +18 -12
app.py
CHANGED
@@ -7,7 +7,6 @@ from huggingface_hub import snapshot_download
|
|
7 |
from src.about import (
|
8 |
CITATION_BUTTON_LABEL,
|
9 |
CITATION_BUTTON_TEXT,
|
10 |
-
EVALUATION_QUEUE_TEXT,
|
11 |
INTRODUCTION_TEXT,
|
12 |
LLM_BENCHMARKS_TEXT,
|
13 |
TITLE,
|
@@ -17,39 +16,38 @@ from src.display.utils import (
|
|
17 |
BENCHMARK_COLS,
|
18 |
COLS,
|
19 |
EVAL_COLS,
|
20 |
-
EVAL_TYPES,
|
21 |
NUMERIC_INTERVALS,
|
22 |
TYPES,
|
23 |
AutoEvalColumn,
|
24 |
ModelType,
|
25 |
fields,
|
26 |
-
WeightType,
|
27 |
Precision
|
28 |
)
|
29 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
30 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
31 |
-
from src.submission.submit import add_new_eval
|
32 |
|
33 |
|
34 |
def restart_space():
|
35 |
API.restart_space(repo_id=REPO_ID)
|
36 |
|
|
|
37 |
try:
|
38 |
print(EVAL_REQUESTS_PATH)
|
39 |
snapshot_download(
|
40 |
-
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30,
|
|
|
41 |
)
|
42 |
except Exception:
|
43 |
restart_space()
|
44 |
try:
|
45 |
print(EVAL_RESULTS_PATH)
|
46 |
snapshot_download(
|
47 |
-
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30,
|
|
|
48 |
)
|
49 |
except Exception:
|
50 |
restart_space()
|
51 |
|
52 |
-
|
53 |
raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
54 |
leaderboard_df = original_df.copy()
|
55 |
|
@@ -62,13 +60,13 @@ leaderboard_df = original_df.copy()
|
|
62 |
|
63 |
# Searching and filtering
|
64 |
def update_table(
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
):
|
73 |
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
|
74 |
filtered_df = filter_queries(query, filtered_df)
|
@@ -87,8 +85,8 @@ def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
|
87 |
]
|
88 |
# We use COLS to maintain sorting
|
89 |
filtered_df = df[
|
90 |
-
always_here_cols + [c for c in COLS if c in df.columns and c in columns]
|
91 |
-
|
92 |
return filtered_df
|
93 |
|
94 |
|
@@ -112,7 +110,7 @@ def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
|
|
112 |
|
113 |
|
114 |
def filter_models(
|
115 |
-
|
116 |
) -> pd.DataFrame:
|
117 |
# Show all models
|
118 |
if show_deleted:
|
@@ -168,7 +166,7 @@ with demo:
|
|
168 |
value=False, label="Show gated/private/deleted models", interactive=True
|
169 |
)
|
170 |
with gr.Column(min_width=320):
|
171 |
-
#with gr.Box(elem_id="box-filter"):
|
172 |
filter_columns_type = gr.CheckboxGroup(
|
173 |
label="Model types",
|
174 |
choices=[t.to_str() for t in ModelType],
|
@@ -195,7 +193,7 @@ with demo:
|
|
195 |
value=leaderboard_df[
|
196 |
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
197 |
+ shown_columns.value
|
198 |
-
|
199 |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
200 |
datatype=TYPES,
|
201 |
elem_id="leaderboard-table",
|
@@ -223,7 +221,8 @@ with demo:
|
|
223 |
],
|
224 |
leaderboard_table,
|
225 |
)
|
226 |
-
for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size,
|
|
|
227 |
selector.change(
|
228 |
update_table,
|
229 |
[
|
@@ -242,93 +241,6 @@ with demo:
|
|
242 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
243 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
244 |
|
245 |
-
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
246 |
-
with gr.Column():
|
247 |
-
with gr.Row():
|
248 |
-
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
249 |
-
|
250 |
-
with gr.Column():
|
251 |
-
with gr.Accordion(
|
252 |
-
f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
|
253 |
-
open=False,
|
254 |
-
):
|
255 |
-
with gr.Row():
|
256 |
-
finished_eval_table = gr.components.Dataframe(
|
257 |
-
value=finished_eval_queue_df,
|
258 |
-
headers=EVAL_COLS,
|
259 |
-
datatype=EVAL_TYPES,
|
260 |
-
row_count=5,
|
261 |
-
)
|
262 |
-
with gr.Accordion(
|
263 |
-
f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
|
264 |
-
open=False,
|
265 |
-
):
|
266 |
-
with gr.Row():
|
267 |
-
running_eval_table = gr.components.Dataframe(
|
268 |
-
value=running_eval_queue_df,
|
269 |
-
headers=EVAL_COLS,
|
270 |
-
datatype=EVAL_TYPES,
|
271 |
-
row_count=5,
|
272 |
-
)
|
273 |
-
|
274 |
-
with gr.Accordion(
|
275 |
-
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
276 |
-
open=False,
|
277 |
-
):
|
278 |
-
with gr.Row():
|
279 |
-
pending_eval_table = gr.components.Dataframe(
|
280 |
-
value=pending_eval_queue_df,
|
281 |
-
headers=EVAL_COLS,
|
282 |
-
datatype=EVAL_TYPES,
|
283 |
-
row_count=5,
|
284 |
-
)
|
285 |
-
with gr.Row():
|
286 |
-
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
|
287 |
-
|
288 |
-
with gr.Row():
|
289 |
-
with gr.Column():
|
290 |
-
model_name_textbox = gr.Textbox(label="Model name")
|
291 |
-
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
292 |
-
model_type = gr.Dropdown(
|
293 |
-
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
294 |
-
label="Model type",
|
295 |
-
multiselect=False,
|
296 |
-
value=None,
|
297 |
-
interactive=True,
|
298 |
-
)
|
299 |
-
|
300 |
-
with gr.Column():
|
301 |
-
precision = gr.Dropdown(
|
302 |
-
choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
303 |
-
label="Precision",
|
304 |
-
multiselect=False,
|
305 |
-
value="float16",
|
306 |
-
interactive=True,
|
307 |
-
)
|
308 |
-
weight_type = gr.Dropdown(
|
309 |
-
choices=[i.value.name for i in WeightType],
|
310 |
-
label="Weights type",
|
311 |
-
multiselect=False,
|
312 |
-
value="Original",
|
313 |
-
interactive=True,
|
314 |
-
)
|
315 |
-
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
316 |
-
|
317 |
-
submit_button = gr.Button("Submit Eval")
|
318 |
-
submission_result = gr.Markdown()
|
319 |
-
submit_button.click(
|
320 |
-
add_new_eval,
|
321 |
-
[
|
322 |
-
model_name_textbox,
|
323 |
-
base_model_name_textbox,
|
324 |
-
revision_name_textbox,
|
325 |
-
precision,
|
326 |
-
weight_type,
|
327 |
-
model_type,
|
328 |
-
],
|
329 |
-
submission_result,
|
330 |
-
)
|
331 |
-
|
332 |
with gr.Row():
|
333 |
with gr.Accordion("📙 Citation", open=False):
|
334 |
citation_button = gr.Textbox(
|
@@ -342,4 +254,4 @@ with demo:
|
|
342 |
scheduler = BackgroundScheduler()
|
343 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
344 |
scheduler.start()
|
345 |
-
demo.queue(default_concurrency_limit=40).launch()
|
|
|
7 |
from src.about import (
|
8 |
CITATION_BUTTON_LABEL,
|
9 |
CITATION_BUTTON_TEXT,
|
|
|
10 |
INTRODUCTION_TEXT,
|
11 |
LLM_BENCHMARKS_TEXT,
|
12 |
TITLE,
|
|
|
16 |
BENCHMARK_COLS,
|
17 |
COLS,
|
18 |
EVAL_COLS,
|
|
|
19 |
NUMERIC_INTERVALS,
|
20 |
TYPES,
|
21 |
AutoEvalColumn,
|
22 |
ModelType,
|
23 |
fields,
|
|
|
24 |
Precision
|
25 |
)
|
26 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
27 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
|
|
28 |
|
29 |
|
30 |
def restart_space():
|
31 |
API.restart_space(repo_id=REPO_ID)
|
32 |
|
33 |
+
|
34 |
try:
|
35 |
print(EVAL_REQUESTS_PATH)
|
36 |
snapshot_download(
|
37 |
+
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30,
|
38 |
+
token=TOKEN
|
39 |
)
|
40 |
except Exception:
|
41 |
restart_space()
|
42 |
try:
|
43 |
print(EVAL_RESULTS_PATH)
|
44 |
snapshot_download(
|
45 |
+
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30,
|
46 |
+
token=TOKEN
|
47 |
)
|
48 |
except Exception:
|
49 |
restart_space()
|
50 |
|
|
|
51 |
raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
52 |
leaderboard_df = original_df.copy()
|
53 |
|
|
|
60 |
|
61 |
# Searching and filtering
|
62 |
def update_table(
|
63 |
+
hidden_df: pd.DataFrame,
|
64 |
+
columns: list,
|
65 |
+
type_query: list,
|
66 |
+
precision_query: str,
|
67 |
+
size_query: list,
|
68 |
+
show_deleted: bool,
|
69 |
+
query: str,
|
70 |
):
|
71 |
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
|
72 |
filtered_df = filter_queries(query, filtered_df)
|
|
|
85 |
]
|
86 |
# We use COLS to maintain sorting
|
87 |
filtered_df = df[
|
88 |
+
always_here_cols + [c for c in COLS if c in df.columns and c in columns]
|
89 |
+
]
|
90 |
return filtered_df
|
91 |
|
92 |
|
|
|
110 |
|
111 |
|
112 |
def filter_models(
|
113 |
+
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
|
114 |
) -> pd.DataFrame:
|
115 |
# Show all models
|
116 |
if show_deleted:
|
|
|
166 |
value=False, label="Show gated/private/deleted models", interactive=True
|
167 |
)
|
168 |
with gr.Column(min_width=320):
|
169 |
+
# with gr.Box(elem_id="box-filter"):
|
170 |
filter_columns_type = gr.CheckboxGroup(
|
171 |
label="Model types",
|
172 |
choices=[t.to_str() for t in ModelType],
|
|
|
193 |
value=leaderboard_df[
|
194 |
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
195 |
+ shown_columns.value
|
196 |
+
],
|
197 |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
198 |
datatype=TYPES,
|
199 |
elem_id="leaderboard-table",
|
|
|
221 |
],
|
222 |
leaderboard_table,
|
223 |
)
|
224 |
+
for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size,
|
225 |
+
deleted_models_visibility]:
|
226 |
selector.change(
|
227 |
update_table,
|
228 |
[
|
|
|
241 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
242 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
243 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
with gr.Row():
|
245 |
with gr.Accordion("📙 Citation", open=False):
|
246 |
citation_button = gr.Textbox(
|
|
|
254 |
scheduler = BackgroundScheduler()
|
255 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
256 |
scheduler.start()
|
257 |
+
demo.queue(default_concurrency_limit=40).launch()
|
src/display/utils.py
CHANGED
@@ -5,6 +5,7 @@ import pandas as pd
|
|
5 |
|
6 |
from src.about import Tasks
|
7 |
|
|
|
8 |
def fields(raw_class):
|
9 |
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
10 |
|
@@ -20,13 +21,13 @@ class ColumnContent:
|
|
20 |
hidden: bool = False
|
21 |
never_hidden: bool = False
|
22 |
|
|
|
23 |
## Leaderboard columns
|
24 |
-
auto_eval_column_dict = []
|
|
|
|
|
25 |
# Init
|
26 |
-
|
27 |
-
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
28 |
-
#Scores
|
29 |
-
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
|
30 |
for task in Tasks:
|
31 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
32 |
# Model information
|
@@ -43,6 +44,7 @@ auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sh
|
|
43 |
# We use make dataclass to dynamically fill the scores from Tasks
|
44 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
45 |
|
|
|
46 |
## For the queue columns in the submission tab
|
47 |
@dataclass(frozen=True)
|
48 |
class EvalQueueColumn: # Queue column
|
@@ -53,12 +55,13 @@ class EvalQueueColumn: # Queue column
|
|
53 |
weight_type = ColumnContent("weight_type", "str", "Original")
|
54 |
status = ColumnContent("status", "str", True)
|
55 |
|
|
|
56 |
## All the model information that we might need
|
57 |
@dataclass
|
58 |
class ModelDetails:
|
59 |
name: str
|
60 |
display_name: str = ""
|
61 |
-
symbol: str = ""
|
62 |
|
63 |
|
64 |
class ModelType(Enum):
|
@@ -83,18 +86,20 @@ class ModelType(Enum):
|
|
83 |
return ModelType.IFT
|
84 |
return ModelType.Unknown
|
85 |
|
|
|
86 |
class WeightType(Enum):
|
87 |
Adapter = ModelDetails("Adapter")
|
88 |
Original = ModelDetails("Original")
|
89 |
Delta = ModelDetails("Delta")
|
90 |
|
|
|
91 |
class Precision(Enum):
|
92 |
float16 = ModelDetails("float16")
|
93 |
bfloat16 = ModelDetails("bfloat16")
|
94 |
float32 = ModelDetails("float32")
|
95 |
-
#qt_8bit = ModelDetails("8bit")
|
96 |
-
#qt_4bit = ModelDetails("4bit")
|
97 |
-
#qt_GPTQ = ModelDetails("GPTQ")
|
98 |
Unknown = ModelDetails("?")
|
99 |
|
100 |
def from_str(precision):
|
@@ -104,14 +109,15 @@ class Precision(Enum):
|
|
104 |
return Precision.bfloat16
|
105 |
if precision in ["float32"]:
|
106 |
return Precision.float32
|
107 |
-
#if precision in ["8bit"]:
|
108 |
# return Precision.qt_8bit
|
109 |
-
#if precision in ["4bit"]:
|
110 |
# return Precision.qt_4bit
|
111 |
-
#if precision in ["GPTQ", "None"]:
|
112 |
# return Precision.qt_GPTQ
|
113 |
return Precision.Unknown
|
114 |
|
|
|
115 |
# Column selection
|
116 |
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
117 |
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
|
|
|
5 |
|
6 |
from src.about import Tasks
|
7 |
|
8 |
+
|
9 |
def fields(raw_class):
|
10 |
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
11 |
|
|
|
21 |
hidden: bool = False
|
22 |
never_hidden: bool = False
|
23 |
|
24 |
+
|
25 |
## Leaderboard columns
|
26 |
+
auto_eval_column_dict = [["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)],
|
27 |
+
["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)],
|
28 |
+
["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)]]
|
29 |
# Init
|
30 |
+
# Scores
|
|
|
|
|
|
|
31 |
for task in Tasks:
|
32 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
33 |
# Model information
|
|
|
44 |
# We use make dataclass to dynamically fill the scores from Tasks
|
45 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
46 |
|
47 |
+
|
48 |
## For the queue columns in the submission tab
|
49 |
@dataclass(frozen=True)
|
50 |
class EvalQueueColumn: # Queue column
|
|
|
55 |
weight_type = ColumnContent("weight_type", "str", "Original")
|
56 |
status = ColumnContent("status", "str", True)
|
57 |
|
58 |
+
|
59 |
## All the model information that we might need
|
60 |
@dataclass
|
61 |
class ModelDetails:
|
62 |
name: str
|
63 |
display_name: str = ""
|
64 |
+
symbol: str = "" # emoji
|
65 |
|
66 |
|
67 |
class ModelType(Enum):
|
|
|
86 |
return ModelType.IFT
|
87 |
return ModelType.Unknown
|
88 |
|
89 |
+
|
90 |
class WeightType(Enum):
|
91 |
Adapter = ModelDetails("Adapter")
|
92 |
Original = ModelDetails("Original")
|
93 |
Delta = ModelDetails("Delta")
|
94 |
|
95 |
+
|
96 |
class Precision(Enum):
|
97 |
float16 = ModelDetails("float16")
|
98 |
bfloat16 = ModelDetails("bfloat16")
|
99 |
float32 = ModelDetails("float32")
|
100 |
+
# qt_8bit = ModelDetails("8bit")
|
101 |
+
# qt_4bit = ModelDetails("4bit")
|
102 |
+
# qt_GPTQ = ModelDetails("GPTQ")
|
103 |
Unknown = ModelDetails("?")
|
104 |
|
105 |
def from_str(precision):
|
|
|
109 |
return Precision.bfloat16
|
110 |
if precision in ["float32"]:
|
111 |
return Precision.float32
|
112 |
+
# if precision in ["8bit"]:
|
113 |
# return Precision.qt_8bit
|
114 |
+
# if precision in ["4bit"]:
|
115 |
# return Precision.qt_4bit
|
116 |
+
# if precision in ["GPTQ", "None"]:
|
117 |
# return Precision.qt_GPTQ
|
118 |
return Precision.Unknown
|
119 |
|
120 |
+
|
121 |
# Column selection
|
122 |
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
123 |
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
|