|
from request_llm.bridge_chatgpt import predict_no_ui |
|
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down |
|
import re |
|
import unicodedata |
|
fast_debug = False |
|
|
|
def is_paragraph_break(match): |
|
""" |
|
根据给定的匹配结果来判断换行符是否表示段落分隔。 |
|
如果换行符前为句子结束标志(句号,感叹号,问号),且下一个字符为大写字母,则换行符更有可能表示段落分隔。 |
|
也可以根据之前的内容长度来判断段落是否已经足够长。 |
|
""" |
|
prev_char, next_char = match.groups() |
|
|
|
|
|
sentence_endings = ".!?" |
|
|
|
|
|
min_paragraph_length = 140 |
|
|
|
if prev_char in sentence_endings and next_char.isupper() and len(match.string[:match.start(1)]) > min_paragraph_length: |
|
return "\n\n" |
|
else: |
|
return " " |
|
|
|
def normalize_text(text): |
|
""" |
|
通过把连字(ligatures)等文本特殊符号转换为其基本形式来对文本进行归一化处理。 |
|
例如,将连字 "fi" 转换为 "f" 和 "i"。 |
|
""" |
|
|
|
normalized_text = unicodedata.normalize("NFKD", text) |
|
|
|
|
|
cleaned_text = re.sub(r'[^\x00-\x7F]+', '', normalized_text) |
|
|
|
return cleaned_text |
|
|
|
def clean_text(raw_text): |
|
""" |
|
对从 PDF 提取出的原始文本进行清洗和格式化处理。 |
|
1. 对原始文本进行归一化处理。 |
|
2. 替换跨行的连词,例如 “Espe-\ncially” 转换为 “Especially”。 |
|
3. 根据 heuristic 规则判断换行符是否是段落分隔,并相应地进行替换。 |
|
""" |
|
|
|
normalized_text = normalize_text(raw_text) |
|
|
|
|
|
text = re.sub(r'(\w+-\n\w+)', lambda m: m.group(1).replace('-\n', ''), normalized_text) |
|
|
|
|
|
newlines = re.compile(r'(\S)\n(\S)') |
|
|
|
|
|
final_text = re.sub(newlines, lambda m: m.group(1) + is_paragraph_break(m) + m.group(2), text) |
|
|
|
return final_text.strip() |
|
|
|
def 解析PDF(file_name, top_p, temperature, chatbot, history, systemPromptTxt): |
|
import time, glob, os, fitz |
|
print('begin analysis on:', file_name) |
|
|
|
with fitz.open(file_name) as doc: |
|
file_content = "" |
|
for page in doc: |
|
file_content += page.get_text() |
|
file_content = clean_text(file_content) |
|
|
|
split_number = 10000 |
|
split_group = (len(file_content)//split_number)+1 |
|
for i in range(0,split_group): |
|
if i==0: |
|
prefix = "接下来请你仔细分析下面的论文,学习里面的内容(专业术语、公式、数学概念).并且注意:由于论文内容较多,将分批次发送,每次发送完之后,你只需要回答“接受完成”" |
|
i_say = prefix + f'文件名是{file_name},文章内容第{i+1}部分是 ```{file_content[i*split_number:(i+1)*split_number]}```' |
|
i_say_show_user = f'文件名是:\n{file_name},\n由于论文内容过长,将分批请求(共{len(file_content)}字符,将分为{split_group}批,每批{split_number}字符)。\n当前发送{i+1}/{split_group}部分' |
|
elif i==split_group-1: |
|
i_say = f'你只需要回答“所有论文接受完成,请进行下一步”。文章内容第{i+1}/{split_group}部分是 ```{file_content[i*split_number:]}```' |
|
i_say_show_user = f'当前发送{i+1}/{split_group}部分' |
|
else: |
|
i_say = f'你只需要回答“接受完成”。文章内容第{i+1}/{split_group}部分是 ```{file_content[i*split_number:(i+1)*split_number]}```' |
|
i_say_show_user = f'当前发送{i+1}/{split_group}部分' |
|
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response.")) |
|
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temperature, history=[]) |
|
while "完成" not in gpt_say: |
|
i_say = f'你只需要回答“接受完成”。文章内容第{i+1}/{split_group}部分是 ```{file_content[i*split_number:(i+1)*split_number]}```' |
|
i_say_show_user = f'出现error,重新发送{i+1}/{split_group}部分' |
|
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temperature, history=[]) |
|
time.sleep(1) |
|
chatbot[-1] = (i_say_show_user, gpt_say) |
|
history.append(i_say_show_user); history.append(gpt_say) |
|
yield chatbot, history, '正常' |
|
time.sleep(2) |
|
|
|
i_say = f'接下来,请你扮演一名专业的学术教授,利用你的所有知识并且结合这篇文章,回答我的问题。(请牢记:1.直到我说“退出”,你才能结束任务;2.所有问题需要紧密围绕文章内容;3.如果有公式,请使用tex渲染)' |
|
chatbot.append((i_say, "[Local Message] waiting gpt response.")) |
|
yield chatbot, history, '正常' |
|
|
|
|
|
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say, chatbot, top_p, temperature, history=history) |
|
chatbot[-1] = (i_say, gpt_say) |
|
history.append(i_say); history.append(gpt_say) |
|
yield chatbot, history, '正常' |
|
|
|
|
|
@CatchException |
|
def 理解PDF文档内容(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT): |
|
import glob, os |
|
|
|
|
|
chatbot.append([ |
|
"函数插件功能?", |
|
"理解PDF论文内容,并且将结合上下文内容,进行学术解答。函数插件贡献者: Hanzoe。"]) |
|
yield chatbot, history, '正常' |
|
|
|
import tkinter as tk |
|
from tkinter import filedialog |
|
|
|
root = tk.Tk() |
|
root.withdraw() |
|
txt = filedialog.askopenfilename() |
|
|
|
|
|
try: |
|
import fitz |
|
except: |
|
report_execption(chatbot, history, |
|
a = f"解析项目: {txt}", |
|
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。") |
|
yield chatbot, history, '正常' |
|
return |
|
|
|
|
|
history = [] |
|
|
|
|
|
yield from 解析PDF(txt, top_p, temperature, chatbot, history, systemPromptTxt) |
|
|
|
|
|
|
|
@CatchException |
|
def 理解PDF文档内容标准文件输入(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT): |
|
import glob, os |
|
|
|
|
|
chatbot.append([ |
|
"函数插件功能?", |
|
"理解PDF论文内容,并且将结合上下文内容,进行学术解答。函数插件贡献者: Hanzoe。"]) |
|
yield chatbot, history, '正常' |
|
|
|
|
|
try: |
|
import fitz |
|
except: |
|
report_execption(chatbot, history, |
|
a = f"解析项目: {txt}", |
|
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。") |
|
yield chatbot, history, '正常' |
|
return |
|
|
|
|
|
history = [] |
|
|
|
|
|
if os.path.exists(txt): |
|
project_folder = txt |
|
else: |
|
if txt == "": |
|
txt = '空空如也的输入栏' |
|
report_execption(chatbot, history, |
|
a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}") |
|
yield chatbot, history, '正常' |
|
return |
|
|
|
|
|
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.pdf', recursive=True)] |
|
|
|
if len(file_manifest) == 0: |
|
report_execption(chatbot, history, |
|
a=f"解析项目: {txt}", b=f"找不到任何.tex或.pdf文件: {txt}") |
|
yield chatbot, history, '正常' |
|
return |
|
txt = file_manifest[0] |
|
|
|
yield from 解析PDF(txt, top_p, temperature, chatbot, history, systemPromptTxt) |
|
|