|
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down |
|
import re |
|
import unicodedata |
|
|
|
|
|
def is_paragraph_break(match): |
|
""" |
|
根据给定的匹配结果来判断换行符是否表示段落分隔。 |
|
如果换行符前为句子结束标志(句号,感叹号,问号),且下一个字符为大写字母,则换行符更有可能表示段落分隔。 |
|
也可以根据之前的内容长度来判断段落是否已经足够长。 |
|
""" |
|
prev_char, next_char = match.groups() |
|
|
|
|
|
sentence_endings = ".!?" |
|
|
|
|
|
min_paragraph_length = 140 |
|
|
|
if prev_char in sentence_endings and next_char.isupper() and len(match.string[:match.start(1)]) > min_paragraph_length: |
|
return "\n\n" |
|
else: |
|
return " " |
|
|
|
|
|
def normalize_text(text): |
|
""" |
|
通过把连字(ligatures)等文本特殊符号转换为其基本形式来对文本进行归一化处理。 |
|
例如,将连字 "fi" 转换为 "f" 和 "i"。 |
|
""" |
|
|
|
normalized_text = unicodedata.normalize("NFKD", text) |
|
|
|
|
|
cleaned_text = re.sub(r'[^\x00-\x7F]+', '', normalized_text) |
|
|
|
return cleaned_text |
|
|
|
|
|
def clean_text(raw_text): |
|
""" |
|
对从 PDF 提取出的原始文本进行清洗和格式化处理。 |
|
1. 对原始文本进行归一化处理。 |
|
2. 替换跨行的连词,例如 “Espe-\ncially” 转换为 “Especially”。 |
|
3. 根据 heuristic 规则判断换行符是否是段落分隔,并相应地进行替换。 |
|
""" |
|
|
|
normalized_text = normalize_text(raw_text) |
|
|
|
|
|
text = re.sub(r'(\w+-\n\w+)', |
|
lambda m: m.group(1).replace('-\n', ''), normalized_text) |
|
|
|
|
|
newlines = re.compile(r'(\S)\n(\S)') |
|
|
|
|
|
final_text = re.sub(newlines, lambda m: m.group( |
|
1) + is_paragraph_break(m) + m.group(2), text) |
|
|
|
return final_text.strip() |
|
|
|
def read_and_clean_pdf_text(fp): |
|
import fitz, re |
|
import numpy as np |
|
|
|
with fitz.open(fp) as doc: |
|
meta_txt = [] |
|
meta_font = [] |
|
for index, page in enumerate(doc): |
|
|
|
text_areas = page.get_text("dict") |
|
|
|
|
|
meta_txt.extend( [ " ".join(["".join( [wtf['text'] for wtf in l['spans'] ]) for l in t['lines'] ]).replace('- ','') for t in text_areas['blocks'] if 'lines' in t]) |
|
meta_font.extend([ np.mean( [ np.mean([wtf['size'] for wtf in l['spans'] ]) for l in t['lines'] ]) for t in text_areas['blocks'] if 'lines' in t]) |
|
if index==0: |
|
page_one_meta = [" ".join(["".join( [wtf['text'] for wtf in l['spans'] ]) for l in t['lines'] ]).replace('- ','') for t in text_areas['blocks'] if 'lines' in t] |
|
|
|
def 把字符太少的块清除为回车(meta_txt): |
|
for index, block_txt in enumerate(meta_txt): |
|
if len(block_txt) < 100: |
|
meta_txt[index] = '\n' |
|
return meta_txt |
|
meta_txt = 把字符太少的块清除为回车(meta_txt) |
|
|
|
def 清理多余的空行(meta_txt): |
|
for index in reversed(range(1, len(meta_txt))): |
|
if meta_txt[index] == '\n' and meta_txt[index-1] == '\n': |
|
meta_txt.pop(index) |
|
return meta_txt |
|
meta_txt = 清理多余的空行(meta_txt) |
|
|
|
def 合并小写开头的段落块(meta_txt): |
|
def starts_with_lowercase_word(s): |
|
pattern = r"^[a-z]+" |
|
match = re.match(pattern, s) |
|
if match: |
|
return True |
|
else: |
|
return False |
|
for _ in range(100): |
|
for index, block_txt in enumerate(meta_txt): |
|
if starts_with_lowercase_word(block_txt): |
|
if meta_txt[index-1]!='\n': meta_txt[index-1] += ' ' |
|
else: meta_txt[index-1] = '' |
|
meta_txt[index-1] += meta_txt[index] |
|
meta_txt[index] = '\n' |
|
return meta_txt |
|
meta_txt = 合并小写开头的段落块(meta_txt) |
|
meta_txt = 清理多余的空行(meta_txt) |
|
|
|
meta_txt = '\n'.join(meta_txt) |
|
|
|
for _ in range(5): |
|
meta_txt = meta_txt.replace('\n\n','\n') |
|
|
|
|
|
meta_txt = meta_txt.replace('\n', '\n\n') |
|
|
|
return meta_txt, page_one_meta |
|
|
|
@CatchException |
|
def 批量翻译PDF文档(txt, top_p, temperature, chatbot, history, sys_prompt, WEB_PORT): |
|
import glob |
|
import os |
|
|
|
|
|
chatbot.append([ |
|
"函数插件功能?", |
|
"批量总结PDF文档。函数插件贡献者: Binary-Husky(二进制哈士奇)"]) |
|
yield chatbot, history, '正常' |
|
|
|
|
|
try: |
|
import fitz, tiktoken |
|
except: |
|
report_execption(chatbot, history, |
|
a=f"解析项目: {txt}", |
|
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。") |
|
yield chatbot, history, '正常' |
|
return |
|
|
|
|
|
history = [] |
|
|
|
|
|
if os.path.exists(txt): |
|
project_folder = txt |
|
else: |
|
if txt == "": |
|
txt = '空空如也的输入栏' |
|
report_execption(chatbot, history, |
|
a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}") |
|
yield chatbot, history, '正常' |
|
return |
|
|
|
|
|
file_manifest = [f for f in glob.glob( |
|
f'{project_folder}/**/*.pdf', recursive=True)] |
|
|
|
|
|
if len(file_manifest) == 0: |
|
report_execption(chatbot, history, |
|
a=f"解析项目: {txt}", b=f"找不到任何.tex或.pdf文件: {txt}") |
|
yield chatbot, history, '正常' |
|
return |
|
|
|
|
|
yield from 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, sys_prompt) |
|
|
|
|
|
def request_gpt_model_in_new_thread_with_ui_alive(inputs, inputs_show_user, top_p, temperature, chatbot, history, sys_prompt, refresh_interval=0.2): |
|
import time |
|
from concurrent.futures import ThreadPoolExecutor |
|
from request_llm.bridge_chatgpt import predict_no_ui_long_connection |
|
|
|
chatbot.append([inputs_show_user, ""]); msg = '正常' |
|
yield chatbot, [], msg |
|
executor = ThreadPoolExecutor(max_workers=16) |
|
mutable = ["", time.time()] |
|
future = executor.submit(lambda: |
|
predict_no_ui_long_connection(inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable) |
|
) |
|
while True: |
|
|
|
time.sleep(refresh_interval) |
|
|
|
mutable[1] = time.time() |
|
if future.done(): break |
|
chatbot[-1] = [chatbot[-1][0], mutable[0]]; msg = "正常" |
|
yield chatbot, [], msg |
|
return future.result() |
|
|
|
def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(inputs_array, inputs_show_user_array, top_p, temperature, chatbot, history_array, sys_prompt_array, refresh_interval=0.2, max_workers=10, scroller_max_len=30): |
|
import time |
|
from concurrent.futures import ThreadPoolExecutor |
|
from request_llm.bridge_chatgpt import predict_no_ui_long_connection |
|
assert len(inputs_array) == len(history_array) |
|
assert len(inputs_array) == len(sys_prompt_array) |
|
executor = ThreadPoolExecutor(max_workers=max_workers) |
|
n_frag = len(inputs_array) |
|
|
|
mutable = [["", time.time()] for _ in range(n_frag)] |
|
def _req_gpt(index, inputs, history, sys_prompt): |
|
gpt_say = predict_no_ui_long_connection( |
|
inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable[index] |
|
) |
|
return gpt_say |
|
|
|
futures = [executor.submit(_req_gpt, index, inputs, history, sys_prompt) for index, inputs, history, sys_prompt in zip(range(len(inputs_array)), inputs_array, history_array, sys_prompt_array)] |
|
cnt = 0 |
|
while True: |
|
|
|
time.sleep(refresh_interval); cnt += 1 |
|
worker_done = [h.done() for h in futures] |
|
if all(worker_done): executor.shutdown(); break |
|
|
|
observe_win = [] |
|
|
|
for thread_index, _ in enumerate(worker_done): mutable[thread_index][1] = time.time() |
|
|
|
for thread_index, _ in enumerate(worker_done): |
|
print_something_really_funny = "[ ...`"+mutable[thread_index][0][-scroller_max_len:].\ |
|
replace('\n','').replace('```','...').replace(' ','.').replace('<br/>','.....').replace('$','.')+"`... ]" |
|
observe_win.append(print_something_really_funny) |
|
stat_str = ''.join([f'执行中: {obs}\n\n' if not done else '已完成\n\n' for done, obs in zip(worker_done, observe_win)]) |
|
chatbot[-1] = [chatbot[-1][0], f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt%10+1))]; msg = "正常" |
|
yield chatbot, [], msg |
|
|
|
gpt_response_collection = [] |
|
for inputs_show_user, f in zip(inputs_show_user_array, futures): |
|
gpt_res = f.result() |
|
gpt_response_collection.extend([inputs_show_user, gpt_res]) |
|
return gpt_response_collection |
|
|
|
def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, sys_prompt): |
|
import time |
|
import glob |
|
import os |
|
import fitz |
|
import tiktoken |
|
TOKEN_LIMIT_PER_FRAGMENT = 1600 |
|
|
|
for index, fp in enumerate(file_manifest): |
|
|
|
file_content, page_one = read_and_clean_pdf_text(fp) |
|
|
|
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf |
|
enc = tiktoken.get_encoding("gpt2") |
|
get_token_num = lambda txt: len(enc.encode(txt)) |
|
|
|
paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf( |
|
txt=file_content, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT) |
|
page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf( |
|
txt=str(page_one), get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4) |
|
|
|
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0] |
|
|
|
paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive( |
|
inputs=f"以下是一篇学术论文的基础信息,请从中提取出“标题”、“收录会议或期刊”、“作者”、“摘要”、“编号”、“作者邮箱”这六个部分。请用markdown格式输出,最后用中文翻译摘要部分。请提取:{paper_meta}", |
|
inputs_show_user=f"请从{fp}中提取出“标题”、“收录会议或期刊”等基本信息。", |
|
top_p=top_p, temperature=temperature, |
|
chatbot=chatbot, history=[], |
|
sys_prompt="Your job is to collect information from materials。", |
|
) |
|
|
|
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency( |
|
inputs_array = [f"以下是你需要翻译的文章段落:\n{frag}" for frag in paper_fragments], |
|
inputs_show_user_array = [f"" for _ in paper_fragments], |
|
top_p=top_p, temperature=temperature, |
|
chatbot=chatbot, |
|
history_array=[[paper_meta] for _ in paper_fragments], |
|
sys_prompt_array=["请你作为一个学术翻译,把整个段落翻译成中文,要求语言简洁,禁止重复输出原文。" for _ in paper_fragments], |
|
max_workers=16 |
|
) |
|
|
|
final = ["", paper_meta_info + '\n\n---\n\n---\n\n---\n\n'] |
|
final.extend(gpt_response_collection) |
|
res = write_results_to_file(final) |
|
chatbot.append((f"{fp}完成了吗?", res)); msg = "完成" |
|
yield chatbot, history, msg |
|
|
|
|