format file
Browse files- crazy_functions/crazy_utils.py +46 -31
- crazy_functions/批量翻译PDF文档_多线程.py +40 -29
crazy_functions/crazy_utils.py
CHANGED
@@ -1,31 +1,32 @@
|
|
1 |
|
2 |
|
3 |
-
|
4 |
def request_gpt_model_in_new_thread_with_ui_alive(inputs, inputs_show_user, top_p, temperature, chatbot, history, sys_prompt, refresh_interval=0.2):
|
5 |
import time
|
6 |
from concurrent.futures import ThreadPoolExecutor
|
7 |
from request_llm.bridge_chatgpt import predict_no_ui_long_connection
|
8 |
# 用户反馈
|
9 |
-
chatbot.append([inputs_show_user, ""])
|
|
|
10 |
yield chatbot, [], msg
|
11 |
executor = ThreadPoolExecutor(max_workers=16)
|
12 |
mutable = ["", time.time()]
|
13 |
future = executor.submit(lambda:
|
14 |
-
|
15 |
-
|
|
|
16 |
while True:
|
17 |
# yield一次以刷新前端页面
|
18 |
time.sleep(refresh_interval)
|
19 |
# “喂狗”(看门狗)
|
20 |
mutable[1] = time.time()
|
21 |
-
if future.done():
|
22 |
-
|
|
|
|
|
23 |
yield chatbot, [], msg
|
24 |
return future.result()
|
25 |
|
26 |
|
27 |
-
|
28 |
-
|
29 |
def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(inputs_array, inputs_show_user_array, top_p, temperature, chatbot, history_array, sys_prompt_array, refresh_interval=0.2, max_workers=10, scroller_max_len=30):
|
30 |
import time
|
31 |
from concurrent.futures import ThreadPoolExecutor
|
@@ -35,34 +36,46 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(inp
|
|
35 |
executor = ThreadPoolExecutor(max_workers=max_workers)
|
36 |
n_frag = len(inputs_array)
|
37 |
# 用户反馈
|
38 |
-
chatbot.append(["请开始多线程操作。", ""])
|
|
|
39 |
yield chatbot, [], msg
|
40 |
# 异步原子
|
41 |
mutable = [["", time.time()] for _ in range(n_frag)]
|
|
|
42 |
def _req_gpt(index, inputs, history, sys_prompt):
|
43 |
gpt_say = predict_no_ui_long_connection(
|
44 |
-
inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable[
|
|
|
45 |
)
|
46 |
return gpt_say
|
47 |
# 异步任务开始
|
48 |
-
futures = [executor.submit(_req_gpt, index, inputs, history, sys_prompt) for index, inputs, history, sys_prompt in zip(
|
|
|
49 |
cnt = 0
|
50 |
while True:
|
51 |
# yield一次以刷新前端页面
|
52 |
-
time.sleep(refresh_interval)
|
|
|
53 |
worker_done = [h.done() for h in futures]
|
54 |
-
if all(worker_done):
|
|
|
|
|
55 |
# 更好的UI视觉效果
|
56 |
observe_win = []
|
57 |
# 每个线程都要“喂狗”(看门狗)
|
58 |
-
for thread_index, _ in enumerate(worker_done):
|
|
|
59 |
# 在前端打印些好玩的东西
|
60 |
-
for thread_index, _ in enumerate(worker_done):
|
61 |
print_something_really_funny = "[ ...`"+mutable[thread_index][0][-scroller_max_len:].\
|
62 |
-
replace('\n','').replace('```','...').replace(
|
|
|
63 |
observe_win.append(print_something_really_funny)
|
64 |
-
stat_str = ''.join([f'执行中: {obs}\n\n' if not done else '已完成\n\n' for done, obs in zip(
|
65 |
-
|
|
|
|
|
|
|
66 |
yield chatbot, [], msg
|
67 |
# 异步任务结束
|
68 |
gpt_response_collection = []
|
@@ -72,23 +85,23 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(inp
|
|
72 |
return gpt_response_collection
|
73 |
|
74 |
|
75 |
-
|
76 |
-
|
77 |
def breakdown_txt_to_satisfy_token_limit(txt, get_token_fn, limit):
|
78 |
-
def cut(txt_tocut, must_break_at_empty_line):
|
79 |
if get_token_fn(txt_tocut) <= limit:
|
80 |
return [txt_tocut]
|
81 |
else:
|
82 |
lines = txt_tocut.split('\n')
|
83 |
-
estimated_line_cut = limit / get_token_fn(txt_tocut)
|
84 |
estimated_line_cut = int(estimated_line_cut)
|
85 |
for cnt in reversed(range(estimated_line_cut)):
|
86 |
-
if must_break_at_empty_line:
|
87 |
-
if lines[cnt] != "":
|
|
|
88 |
print(cnt)
|
89 |
prev = "\n".join(lines[:cnt])
|
90 |
post = "\n".join(lines[cnt:])
|
91 |
-
if get_token_fn(prev) < limit:
|
|
|
92 |
if cnt == 0:
|
93 |
print('what the fuck ?')
|
94 |
raise RuntimeError("存在一行极长的文本!")
|
@@ -102,22 +115,25 @@ def breakdown_txt_to_satisfy_token_limit(txt, get_token_fn, limit):
|
|
102 |
except RuntimeError:
|
103 |
return cut(txt, must_break_at_empty_line=False)
|
104 |
|
|
|
105 |
def breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn, limit):
|
106 |
-
def cut(txt_tocut, must_break_at_empty_line):
|
107 |
if get_token_fn(txt_tocut) <= limit:
|
108 |
return [txt_tocut]
|
109 |
else:
|
110 |
lines = txt_tocut.split('\n')
|
111 |
-
estimated_line_cut = limit / get_token_fn(txt_tocut)
|
112 |
estimated_line_cut = int(estimated_line_cut)
|
113 |
cnt = 0
|
114 |
for cnt in reversed(range(estimated_line_cut)):
|
115 |
-
if must_break_at_empty_line:
|
116 |
-
if lines[cnt] != "":
|
|
|
117 |
print(cnt)
|
118 |
prev = "\n".join(lines[:cnt])
|
119 |
post = "\n".join(lines[cnt:])
|
120 |
-
if get_token_fn(prev) < limit:
|
|
|
121 |
if cnt == 0:
|
122 |
# print('what the fuck ? 存在一行极长的文本!')
|
123 |
raise RuntimeError("存在一行极长的文本!")
|
@@ -135,4 +151,3 @@ def breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn, limit):
|
|
135 |
# 这个中文的句号是故意的,作为一个标识而存在
|
136 |
res = cut(txt.replace('.', '。\n'), must_break_at_empty_line=False)
|
137 |
return [r.replace('。\n', '.') for r in res]
|
138 |
-
|
|
|
1 |
|
2 |
|
|
|
3 |
def request_gpt_model_in_new_thread_with_ui_alive(inputs, inputs_show_user, top_p, temperature, chatbot, history, sys_prompt, refresh_interval=0.2):
|
4 |
import time
|
5 |
from concurrent.futures import ThreadPoolExecutor
|
6 |
from request_llm.bridge_chatgpt import predict_no_ui_long_connection
|
7 |
# 用户反馈
|
8 |
+
chatbot.append([inputs_show_user, ""])
|
9 |
+
msg = '正常'
|
10 |
yield chatbot, [], msg
|
11 |
executor = ThreadPoolExecutor(max_workers=16)
|
12 |
mutable = ["", time.time()]
|
13 |
future = executor.submit(lambda:
|
14 |
+
predict_no_ui_long_connection(
|
15 |
+
inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable)
|
16 |
+
)
|
17 |
while True:
|
18 |
# yield一次以刷新前端页面
|
19 |
time.sleep(refresh_interval)
|
20 |
# “喂狗”(看门狗)
|
21 |
mutable[1] = time.time()
|
22 |
+
if future.done():
|
23 |
+
break
|
24 |
+
chatbot[-1] = [chatbot[-1][0], mutable[0]]
|
25 |
+
msg = "正常"
|
26 |
yield chatbot, [], msg
|
27 |
return future.result()
|
28 |
|
29 |
|
|
|
|
|
30 |
def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(inputs_array, inputs_show_user_array, top_p, temperature, chatbot, history_array, sys_prompt_array, refresh_interval=0.2, max_workers=10, scroller_max_len=30):
|
31 |
import time
|
32 |
from concurrent.futures import ThreadPoolExecutor
|
|
|
36 |
executor = ThreadPoolExecutor(max_workers=max_workers)
|
37 |
n_frag = len(inputs_array)
|
38 |
# 用户反馈
|
39 |
+
chatbot.append(["请开始多线程操作。", ""])
|
40 |
+
msg = '正常'
|
41 |
yield chatbot, [], msg
|
42 |
# 异步原子
|
43 |
mutable = [["", time.time()] for _ in range(n_frag)]
|
44 |
+
|
45 |
def _req_gpt(index, inputs, history, sys_prompt):
|
46 |
gpt_say = predict_no_ui_long_connection(
|
47 |
+
inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable[
|
48 |
+
index]
|
49 |
)
|
50 |
return gpt_say
|
51 |
# 异步任务开始
|
52 |
+
futures = [executor.submit(_req_gpt, index, inputs, history, sys_prompt) for index, inputs, history, sys_prompt in zip(
|
53 |
+
range(len(inputs_array)), inputs_array, history_array, sys_prompt_array)]
|
54 |
cnt = 0
|
55 |
while True:
|
56 |
# yield一次以刷新前端页面
|
57 |
+
time.sleep(refresh_interval)
|
58 |
+
cnt += 1
|
59 |
worker_done = [h.done() for h in futures]
|
60 |
+
if all(worker_done):
|
61 |
+
executor.shutdown()
|
62 |
+
break
|
63 |
# 更好的UI视觉效果
|
64 |
observe_win = []
|
65 |
# 每个线程都要“喂狗”(看门狗)
|
66 |
+
for thread_index, _ in enumerate(worker_done):
|
67 |
+
mutable[thread_index][1] = time.time()
|
68 |
# 在前端打印些好玩的东西
|
69 |
+
for thread_index, _ in enumerate(worker_done):
|
70 |
print_something_really_funny = "[ ...`"+mutable[thread_index][0][-scroller_max_len:].\
|
71 |
+
replace('\n', '').replace('```', '...').replace(
|
72 |
+
' ', '.').replace('<br/>', '.....').replace('$', '.')+"`... ]"
|
73 |
observe_win.append(print_something_really_funny)
|
74 |
+
stat_str = ''.join([f'执行中: {obs}\n\n' if not done else '已完成\n\n' for done, obs in zip(
|
75 |
+
worker_done, observe_win)])
|
76 |
+
chatbot[-1] = [chatbot[-1][0],
|
77 |
+
f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt % 10+1))]
|
78 |
+
msg = "正常"
|
79 |
yield chatbot, [], msg
|
80 |
# 异步任务结束
|
81 |
gpt_response_collection = []
|
|
|
85 |
return gpt_response_collection
|
86 |
|
87 |
|
|
|
|
|
88 |
def breakdown_txt_to_satisfy_token_limit(txt, get_token_fn, limit):
|
89 |
+
def cut(txt_tocut, must_break_at_empty_line): # 递归
|
90 |
if get_token_fn(txt_tocut) <= limit:
|
91 |
return [txt_tocut]
|
92 |
else:
|
93 |
lines = txt_tocut.split('\n')
|
94 |
+
estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines)
|
95 |
estimated_line_cut = int(estimated_line_cut)
|
96 |
for cnt in reversed(range(estimated_line_cut)):
|
97 |
+
if must_break_at_empty_line:
|
98 |
+
if lines[cnt] != "":
|
99 |
+
continue
|
100 |
print(cnt)
|
101 |
prev = "\n".join(lines[:cnt])
|
102 |
post = "\n".join(lines[cnt:])
|
103 |
+
if get_token_fn(prev) < limit:
|
104 |
+
break
|
105 |
if cnt == 0:
|
106 |
print('what the fuck ?')
|
107 |
raise RuntimeError("存在一行极长的文本!")
|
|
|
115 |
except RuntimeError:
|
116 |
return cut(txt, must_break_at_empty_line=False)
|
117 |
|
118 |
+
|
119 |
def breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn, limit):
|
120 |
+
def cut(txt_tocut, must_break_at_empty_line): # 递归
|
121 |
if get_token_fn(txt_tocut) <= limit:
|
122 |
return [txt_tocut]
|
123 |
else:
|
124 |
lines = txt_tocut.split('\n')
|
125 |
+
estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines)
|
126 |
estimated_line_cut = int(estimated_line_cut)
|
127 |
cnt = 0
|
128 |
for cnt in reversed(range(estimated_line_cut)):
|
129 |
+
if must_break_at_empty_line:
|
130 |
+
if lines[cnt] != "":
|
131 |
+
continue
|
132 |
print(cnt)
|
133 |
prev = "\n".join(lines[:cnt])
|
134 |
post = "\n".join(lines[cnt:])
|
135 |
+
if get_token_fn(prev) < limit:
|
136 |
+
break
|
137 |
if cnt == 0:
|
138 |
# print('what the fuck ? 存在一行极长的文本!')
|
139 |
raise RuntimeError("存在一行极长的文本!")
|
|
|
151 |
# 这个中文的句号是故意的,作为一个标识而存在
|
152 |
res = cut(txt.replace('.', '。\n'), must_break_at_empty_line=False)
|
153 |
return [r.replace('。\n', '.') for r in res]
|
|
crazy_functions/批量翻译PDF文档_多线程.py
CHANGED
@@ -2,6 +2,7 @@ from toolbox import CatchException, report_execption, write_results_to_file
|
|
2 |
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
3 |
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
4 |
|
|
|
5 |
def read_and_clean_pdf_text(fp):
|
6 |
"""
|
7 |
**输入参数说明**
|
@@ -20,7 +21,8 @@ def read_and_clean_pdf_text(fp):
|
|
20 |
- 清除重复的换行
|
21 |
- 将每个换行符替换为两个换行符,使每个段落之间有两个换行符分隔
|
22 |
"""
|
23 |
-
import fitz
|
|
|
24 |
import numpy as np
|
25 |
# file_content = ""
|
26 |
with fitz.open(fp) as doc:
|
@@ -31,10 +33,13 @@ def read_and_clean_pdf_text(fp):
|
|
31 |
text_areas = page.get_text("dict") # 获取页面上的文本信息
|
32 |
|
33 |
# 块元提取 for each word segment with in line for each line cross-line words for each block
|
34 |
-
meta_txt.extend(
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
38 |
|
39 |
def 把字符太少的块清除为回车(meta_txt):
|
40 |
for index, block_txt in enumerate(meta_txt):
|
@@ -61,8 +66,10 @@ def read_and_clean_pdf_text(fp):
|
|
61 |
for _ in range(100):
|
62 |
for index, block_txt in enumerate(meta_txt):
|
63 |
if starts_with_lowercase_word(block_txt):
|
64 |
-
if meta_txt[index-1]!='\n':
|
65 |
-
|
|
|
|
|
66 |
meta_txt[index-1] += meta_txt[index]
|
67 |
meta_txt[index] = '\n'
|
68 |
return meta_txt
|
@@ -72,13 +79,14 @@ def read_and_clean_pdf_text(fp):
|
|
72 |
meta_txt = '\n'.join(meta_txt)
|
73 |
# 清除重复的换行
|
74 |
for _ in range(5):
|
75 |
-
meta_txt = meta_txt.replace('\n\n','\n')
|
76 |
|
77 |
# 换行 -> 双换行
|
78 |
meta_txt = meta_txt.replace('\n', '\n\n')
|
79 |
|
80 |
return meta_txt, page_one_meta
|
81 |
|
|
|
82 |
@CatchException
|
83 |
def 批量翻译PDF文档(txt, top_p, temperature, chatbot, history, sys_prompt, WEB_PORT):
|
84 |
import glob
|
@@ -92,7 +100,8 @@ def 批量翻译PDF文档(txt, top_p, temperature, chatbot, history, sys_prompt,
|
|
92 |
|
93 |
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
94 |
try:
|
95 |
-
import fitz
|
|
|
96 |
except:
|
97 |
report_execption(chatbot, history,
|
98 |
a=f"解析项目: {txt}",
|
@@ -129,13 +138,8 @@ def 批量翻译PDF文档(txt, top_p, temperature, chatbot, history, sys_prompt,
|
|
129 |
yield from 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, sys_prompt)
|
130 |
|
131 |
|
132 |
-
|
133 |
-
|
134 |
def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, sys_prompt):
|
135 |
-
import time
|
136 |
-
import glob
|
137 |
import os
|
138 |
-
import fitz
|
139 |
import tiktoken
|
140 |
TOKEN_LIMIT_PER_FRAGMENT = 1600
|
141 |
generated_conclusion_files = []
|
@@ -145,39 +149,44 @@ def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, histor
|
|
145 |
# 递归地切割PDF文件
|
146 |
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
|
147 |
enc = tiktoken.get_encoding("gpt2")
|
148 |
-
get_token_num
|
149 |
# 分解文本
|
150 |
-
paper_fragments
|
151 |
txt=file_content, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT)
|
152 |
page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
|
153 |
txt=str(page_one), get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4)
|
154 |
# 为了更好的效果,我们剥离Introduction之后的部分
|
155 |
-
paper_meta = page_one_fragments[0].split('introduction')[0].split(
|
|
|
156 |
# 单线,获取文章meta信息
|
157 |
paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
158 |
-
inputs=f"以下是一篇学术论文的基础信息,请从中提取出“标题”、“收录会议或期刊”、“作者”、“摘要”、“编号”、“作者邮箱”这六个部分。请用markdown格式输出,最后用中文翻译摘要部分。请提取:{paper_meta}",
|
159 |
-
inputs_show_user=f"请从{fp}中提取出“标题”、“收录会议或期刊”等基本信息。",
|
160 |
top_p=top_p, temperature=temperature,
|
161 |
chatbot=chatbot, history=[],
|
162 |
sys_prompt="Your job is to collect information from materials。",
|
163 |
)
|
164 |
# 多线,翻译
|
165 |
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
166 |
-
inputs_array
|
167 |
-
|
|
|
168 |
top_p=top_p, temperature=temperature,
|
169 |
chatbot=chatbot,
|
170 |
history_array=[[paper_meta] for _ in paper_fragments],
|
171 |
-
sys_prompt_array=[
|
172 |
-
|
|
|
173 |
)
|
174 |
|
175 |
final = ["", paper_meta_info + '\n\n---\n\n---\n\n---\n\n']
|
176 |
final.extend(gpt_response_collection)
|
177 |
create_report_file_name = f"{os.path.basename(fp)}.trans.md"
|
178 |
res = write_results_to_file(final, file_name=create_report_file_name)
|
179 |
-
generated_conclusion_files.append(
|
180 |
-
|
|
|
|
|
181 |
yield chatbot, history, msg
|
182 |
|
183 |
# 准备文件的下载
|
@@ -185,8 +194,10 @@ def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, histor
|
|
185 |
for pdf_path in generated_conclusion_files:
|
186 |
# 重命名文件
|
187 |
rename_file = f'./gpt_log/总结论文-{os.path.basename(pdf_path)}'
|
188 |
-
if os.path.exists(rename_file):
|
189 |
-
|
190 |
-
|
|
|
|
|
191 |
chatbot.append(("给出输出文件清单", str(generated_conclusion_files)))
|
192 |
-
yield chatbot, history, msg
|
|
|
2 |
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
3 |
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
4 |
|
5 |
+
|
6 |
def read_and_clean_pdf_text(fp):
|
7 |
"""
|
8 |
**输入参数说明**
|
|
|
21 |
- 清除重复的换行
|
22 |
- 将每个换行符替换为两个换行符,使每个段落之间有两个换行符分隔
|
23 |
"""
|
24 |
+
import fitz
|
25 |
+
import re
|
26 |
import numpy as np
|
27 |
# file_content = ""
|
28 |
with fitz.open(fp) as doc:
|
|
|
33 |
text_areas = page.get_text("dict") # 获取页面上的文本信息
|
34 |
|
35 |
# 块元提取 for each word segment with in line for each line cross-line words for each block
|
36 |
+
meta_txt.extend([" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace(
|
37 |
+
'- ', '') for t in text_areas['blocks'] if 'lines' in t])
|
38 |
+
meta_font.extend([np.mean([np.mean([wtf['size'] for wtf in l['spans']])
|
39 |
+
for l in t['lines']]) for t in text_areas['blocks'] if 'lines' in t])
|
40 |
+
if index == 0:
|
41 |
+
page_one_meta = [" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace(
|
42 |
+
'- ', '') for t in text_areas['blocks'] if 'lines' in t]
|
43 |
|
44 |
def 把字符太少的块清除为回车(meta_txt):
|
45 |
for index, block_txt in enumerate(meta_txt):
|
|
|
66 |
for _ in range(100):
|
67 |
for index, block_txt in enumerate(meta_txt):
|
68 |
if starts_with_lowercase_word(block_txt):
|
69 |
+
if meta_txt[index-1] != '\n':
|
70 |
+
meta_txt[index-1] += ' '
|
71 |
+
else:
|
72 |
+
meta_txt[index-1] = ''
|
73 |
meta_txt[index-1] += meta_txt[index]
|
74 |
meta_txt[index] = '\n'
|
75 |
return meta_txt
|
|
|
79 |
meta_txt = '\n'.join(meta_txt)
|
80 |
# 清除重复的换行
|
81 |
for _ in range(5):
|
82 |
+
meta_txt = meta_txt.replace('\n\n', '\n')
|
83 |
|
84 |
# 换行 -> 双换行
|
85 |
meta_txt = meta_txt.replace('\n', '\n\n')
|
86 |
|
87 |
return meta_txt, page_one_meta
|
88 |
|
89 |
+
|
90 |
@CatchException
|
91 |
def 批量翻译PDF文档(txt, top_p, temperature, chatbot, history, sys_prompt, WEB_PORT):
|
92 |
import glob
|
|
|
100 |
|
101 |
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
102 |
try:
|
103 |
+
import fitz
|
104 |
+
import tiktoken
|
105 |
except:
|
106 |
report_execption(chatbot, history,
|
107 |
a=f"解析项目: {txt}",
|
|
|
138 |
yield from 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, sys_prompt)
|
139 |
|
140 |
|
|
|
|
|
141 |
def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, sys_prompt):
|
|
|
|
|
142 |
import os
|
|
|
143 |
import tiktoken
|
144 |
TOKEN_LIMIT_PER_FRAGMENT = 1600
|
145 |
generated_conclusion_files = []
|
|
|
149 |
# 递归地切割PDF文件
|
150 |
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
|
151 |
enc = tiktoken.get_encoding("gpt2")
|
152 |
+
def get_token_num(txt): return len(enc.encode(txt))
|
153 |
# 分解文本
|
154 |
+
paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
|
155 |
txt=file_content, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT)
|
156 |
page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
|
157 |
txt=str(page_one), get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4)
|
158 |
# 为了更好的效果,我们剥离Introduction之后的部分
|
159 |
+
paper_meta = page_one_fragments[0].split('introduction')[0].split(
|
160 |
+
'Introduction')[0].split('INTRODUCTION')[0]
|
161 |
# 单线,获取文章meta信息
|
162 |
paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
163 |
+
inputs=f"以下是一篇学术论文的基础信息,请从中提取出“标题”、“收录会议或期刊”、“作者”、“摘要”、“编号”、“作者邮箱”这六个部分。请用markdown格式输出,最后用中文翻译摘要部分。请提取:{paper_meta}",
|
164 |
+
inputs_show_user=f"请从{fp}中提取出“标题”、“收录会议或期刊”等基本信息。",
|
165 |
top_p=top_p, temperature=temperature,
|
166 |
chatbot=chatbot, history=[],
|
167 |
sys_prompt="Your job is to collect information from materials。",
|
168 |
)
|
169 |
# 多线,翻译
|
170 |
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
171 |
+
inputs_array=[
|
172 |
+
f"以下是你需要翻译的文章段落:\n{frag}" for frag in paper_fragments],
|
173 |
+
inputs_show_user_array=[f"" for _ in paper_fragments],
|
174 |
top_p=top_p, temperature=temperature,
|
175 |
chatbot=chatbot,
|
176 |
history_array=[[paper_meta] for _ in paper_fragments],
|
177 |
+
sys_prompt_array=[
|
178 |
+
"请你作为一个学术翻译,把整个段落翻译成中文,要求语言简洁,禁止重复输出原文。" for _ in paper_fragments],
|
179 |
+
max_workers=16 # OpenAI所允许的最大并行过载
|
180 |
)
|
181 |
|
182 |
final = ["", paper_meta_info + '\n\n---\n\n---\n\n---\n\n']
|
183 |
final.extend(gpt_response_collection)
|
184 |
create_report_file_name = f"{os.path.basename(fp)}.trans.md"
|
185 |
res = write_results_to_file(final, file_name=create_report_file_name)
|
186 |
+
generated_conclusion_files.append(
|
187 |
+
f'./gpt_log/{create_report_file_name}')
|
188 |
+
chatbot.append((f"{fp}完成了吗?", res))
|
189 |
+
msg = "完成"
|
190 |
yield chatbot, history, msg
|
191 |
|
192 |
# 准备文件的下载
|
|
|
194 |
for pdf_path in generated_conclusion_files:
|
195 |
# 重命名文件
|
196 |
rename_file = f'./gpt_log/总结论文-{os.path.basename(pdf_path)}'
|
197 |
+
if os.path.exists(rename_file):
|
198 |
+
os.remove(rename_file)
|
199 |
+
shutil.copyfile(pdf_path, rename_file)
|
200 |
+
if os.path.exists(pdf_path):
|
201 |
+
os.remove(pdf_path)
|
202 |
chatbot.append(("给出输出文件清单", str(generated_conclusion_files)))
|
203 |
+
yield chatbot, history, msg
|