成功借助tgui调用更多LLM
Browse files- config.py +1 -1
- predict.py +4 -1
- request_llm/README.md +39 -0
- request_llm/bridge_tgui.py +26 -8
config.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
# [step 1]>> 例如: API_KEY = "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" (此key无效)
|
2 |
-
API_KEY = "sk
|
3 |
|
4 |
# [step 2]>> 改为True应用代理,如果直接在海外服务器部署,此处不修改
|
5 |
USE_PROXY = False
|
|
|
1 |
# [step 1]>> 例如: API_KEY = "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" (此key无效)
|
2 |
+
API_KEY = "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"
|
3 |
|
4 |
# [step 2]>> 改为True应用代理,如果直接在海外服务器部署,此处不修改
|
5 |
USE_PROXY = False
|
predict.py
CHANGED
@@ -244,7 +244,10 @@ def generate_payload(inputs, top_p, temperature, history, system_prompt, stream)
|
|
244 |
|
245 |
|
246 |
if not LLM_MODEL.startswith('gpt'):
|
247 |
-
|
|
|
248 |
predict = predict_tgui
|
|
|
|
|
249 |
|
250 |
|
|
|
244 |
|
245 |
|
246 |
if not LLM_MODEL.startswith('gpt'):
|
247 |
+
# 函数重载到另一个文件
|
248 |
+
from request_llm.bridge_tgui import predict_tgui, predict_tgui_no_ui
|
249 |
predict = predict_tgui
|
250 |
+
predict_no_ui = predict_tgui_no_ui
|
251 |
+
predict_no_ui_long_connection = predict_tgui_no_ui
|
252 |
|
253 |
|
request_llm/README.md
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 如何使用其他大语言模型
|
2 |
+
|
3 |
+
## 1. 先运行text-generation
|
4 |
+
``` sh
|
5 |
+
# 下载模型
|
6 |
+
git clone https://github.com/oobabooga/text-generation-webui.git
|
7 |
+
|
8 |
+
# 安装text-generation的额外依赖
|
9 |
+
pip install accelerate bitsandbytes flexgen gradio llamacpp markdown numpy peft requests rwkv safetensors sentencepiece tqdm datasets git+https://github.com/huggingface/transformers
|
10 |
+
|
11 |
+
# 切换路径
|
12 |
+
cd text-generation-webui
|
13 |
+
|
14 |
+
# 下载模型
|
15 |
+
python download-model.py facebook/opt-1.3b
|
16 |
+
|
17 |
+
# 其他可选如 facebook/galactica-1.3b
|
18 |
+
# facebook/galactica-6.7b
|
19 |
+
# facebook/galactica-120b
|
20 |
+
|
21 |
+
# Pymalion 6B is a proof-of-concept dialogue model based on EleutherAI's GPT-J-6B.
|
22 |
+
# facebook/pygmalion-1.3b
|
23 |
+
|
24 |
+
# 启动text-generation,注意把模型的斜杠改成下划线
|
25 |
+
python server.py --cpu --listen --listen-port 7860 --model facebook_galactica-1.3b
|
26 |
+
```
|
27 |
+
|
28 |
+
## 2. 修改config.py
|
29 |
+
```
|
30 |
+
# LLM_MODEL格式为 [模型]@[ws地址] @[ws端口]
|
31 |
+
LLM_MODEL = "pygmalion-1.3b@localhost@7860"
|
32 |
+
```
|
33 |
+
|
34 |
+
|
35 |
+
## 3. 运行!
|
36 |
+
```
|
37 |
+
cd chatgpt-academic
|
38 |
+
python main.py
|
39 |
+
```
|
request_llm/bridge_tgui.py
CHANGED
@@ -11,6 +11,7 @@ import websockets
|
|
11 |
import logging
|
12 |
import time
|
13 |
import threading
|
|
|
14 |
from toolbox import get_conf
|
15 |
LLM_MODEL, = get_conf('LLM_MODEL')
|
16 |
|
@@ -22,7 +23,7 @@ def random_hash():
|
|
22 |
|
23 |
async def run(context):
|
24 |
params = {
|
25 |
-
'max_new_tokens':
|
26 |
'do_sample': True,
|
27 |
'temperature': 0.5,
|
28 |
'top_p': 0.9,
|
@@ -103,9 +104,10 @@ def predict_tgui(inputs, top_p, temperature, chatbot=[], history=[], system_prom
|
|
103 |
if "PreProcess" in functional[additional_fn]: inputs = functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
|
104 |
inputs = functional[additional_fn]["Prefix"] + inputs + functional[additional_fn]["Suffix"]
|
105 |
|
106 |
-
raw_input = inputs
|
107 |
logging.info(f'[raw_input] {raw_input}')
|
108 |
-
|
|
|
109 |
yield chatbot, history, "等待响应"
|
110 |
|
111 |
prompt = inputs
|
@@ -113,11 +115,11 @@ def predict_tgui(inputs, top_p, temperature, chatbot=[], history=[], system_prom
|
|
113 |
|
114 |
mutable = [""]
|
115 |
def run_coorotine(mutable):
|
116 |
-
async def get_result():
|
117 |
async for response in run(prompt):
|
118 |
# Print intermediate steps
|
119 |
-
mutable
|
120 |
-
asyncio.run(get_result())
|
121 |
|
122 |
thread_listen = threading.Thread(target=run_coorotine, args=(mutable,))
|
123 |
thread_listen.start()
|
@@ -129,9 +131,25 @@ def predict_tgui(inputs, top_p, temperature, chatbot=[], history=[], system_prom
|
|
129 |
tgui_say = mutable[0]
|
130 |
history[-1] = tgui_say
|
131 |
chatbot[-1] = (history[-2], history[-1])
|
132 |
-
yield chatbot, history, status_text
|
133 |
|
134 |
logging.info(f'[response] {tgui_say}')
|
135 |
|
136 |
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
import logging
|
12 |
import time
|
13 |
import threading
|
14 |
+
import importlib
|
15 |
from toolbox import get_conf
|
16 |
LLM_MODEL, = get_conf('LLM_MODEL')
|
17 |
|
|
|
23 |
|
24 |
async def run(context):
|
25 |
params = {
|
26 |
+
'max_new_tokens': 1024,
|
27 |
'do_sample': True,
|
28 |
'temperature': 0.5,
|
29 |
'top_p': 0.9,
|
|
|
104 |
if "PreProcess" in functional[additional_fn]: inputs = functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
|
105 |
inputs = functional[additional_fn]["Prefix"] + inputs + functional[additional_fn]["Suffix"]
|
106 |
|
107 |
+
raw_input = "What I would like to say is the following: " + inputs
|
108 |
logging.info(f'[raw_input] {raw_input}')
|
109 |
+
history.extend([inputs, ""])
|
110 |
+
chatbot.append([inputs, ""])
|
111 |
yield chatbot, history, "等待响应"
|
112 |
|
113 |
prompt = inputs
|
|
|
115 |
|
116 |
mutable = [""]
|
117 |
def run_coorotine(mutable):
|
118 |
+
async def get_result(mutable):
|
119 |
async for response in run(prompt):
|
120 |
# Print intermediate steps
|
121 |
+
mutable[0] = response
|
122 |
+
asyncio.run(get_result(mutable))
|
123 |
|
124 |
thread_listen = threading.Thread(target=run_coorotine, args=(mutable,))
|
125 |
thread_listen.start()
|
|
|
131 |
tgui_say = mutable[0]
|
132 |
history[-1] = tgui_say
|
133 |
chatbot[-1] = (history[-2], history[-1])
|
134 |
+
yield chatbot, history, "status_text"
|
135 |
|
136 |
logging.info(f'[response] {tgui_say}')
|
137 |
|
138 |
|
139 |
+
|
140 |
+
def predict_tgui_no_ui(inputs, top_p, temperature, history=[], sys_prompt=""):
|
141 |
+
raw_input = "What I would like to say is the following: " + inputs
|
142 |
+
prompt = inputs
|
143 |
+
tgui_say = ""
|
144 |
+
mutable = [""]
|
145 |
+
def run_coorotine(mutable):
|
146 |
+
async def get_result(mutable):
|
147 |
+
async for response in run(prompt):
|
148 |
+
# Print intermediate steps
|
149 |
+
mutable[0] = response
|
150 |
+
asyncio.run(get_result(mutable))
|
151 |
+
thread_listen = threading.Thread(target=run_coorotine, args=(mutable,))
|
152 |
+
thread_listen.start()
|
153 |
+
thread_listen.join()
|
154 |
+
tgui_say = mutable[0]
|
155 |
+
return tgui_say
|