Spaces:
Running
Running
File size: 13,328 Bytes
91609d6 a9a4892 91609d6 a9a4892 91609d6 a9a4892 91609d6 03ba072 01a377d 91609d6 ab61418 91609d6 9f9848c 91609d6 2b96217 b0409b9 91609d6 9bd8511 91609d6 b0409b9 c37c49d 01a377d 518385d 01a377d 518385d 01a377d b0409b9 40d91e9 01a377d 03ba072 9bd8511 01a377d 03ba072 b0409b9 40d91e9 03ba072 9f9848c 03ba072 9bd8511 01a377d 45c81cd b0409b9 40d91e9 03ba072 9bd8511 9f9848c 03ba072 9bd8511 01a377d 03ba072 b0409b9 40d91e9 03ba072 9bd8511 01a377d 45c81cd b0409b9 40d91e9 03ba072 96c1852 03ba072 9bd8511 03ba072 b0409b9 40d91e9 03ba072 96c1852 2b96217 518385d 2b96217 c43e22b 03ba072 4b9078a 5102ec8 c43e22b 42eef1b 7842cf0 4b9078a 6aba339 9bd8511 6aba339 ab61418 6aba339 91609d6 9bd8511 91609d6 9bd8511 91609d6 6aba339 91609d6 6aba339 91609d6 9bd8511 91609d6 6aba339 91609d6 781ef44 91609d6 6aba339 91609d6 6aba339 91609d6 6aba339 91609d6 5353eba 91609d6 9bd8511 91609d6 9bd8511 91609d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
"""
该文件中主要包含2个函数,是所有LLM的通用接口,它们会继续向下调用更底层的LLM模型,处理多模型并行等细节
不具备多线程能力的函数:正常对话时使用,具备完备的交互功能,不可多线程
1. predict(...)
具备多线程调用能力的函数:在函数插件中被调用,灵活而简洁
2. predict_no_ui_long_connection(...)
"""
import tiktoken
from functools import lru_cache
from concurrent.futures import ThreadPoolExecutor
from toolbox import get_conf, trimmed_format_exc
from .bridge_chatgpt import predict_no_ui_long_connection as chatgpt_noui
from .bridge_chatgpt import predict as chatgpt_ui
from .bridge_azure_test import predict_no_ui_long_connection as azure_noui
from .bridge_azure_test import predict as azure_ui
from .bridge_chatglm import predict_no_ui_long_connection as chatglm_noui
from .bridge_chatglm import predict as chatglm_ui
from .bridge_newbing import predict_no_ui_long_connection as newbing_noui
from .bridge_newbing import predict as newbing_ui
# from .bridge_tgui import predict_no_ui_long_connection as tgui_noui
# from .bridge_tgui import predict as tgui_ui
colors = ['#FF00FF', '#00FFFF', '#FF0000', '#990099', '#009999', '#990044']
class LazyloadTiktoken(object):
def __init__(self, model):
self.model = model
@staticmethod
@lru_cache(maxsize=128)
def get_encoder(model):
print('正在加载tokenizer,如果是第一次运行,可能需要一点时间下载参数')
tmp = tiktoken.encoding_for_model(model)
print('加载tokenizer完毕')
return tmp
def encode(self, *args, **kwargs):
encoder = self.get_encoder(self.model)
return encoder.encode(*args, **kwargs)
def decode(self, *args, **kwargs):
encoder = self.get_encoder(self.model)
return encoder.decode(*args, **kwargs)
# Endpoint 重定向
API_URL_REDIRECT, = get_conf("API_URL_REDIRECT")
openai_endpoint = "https://api.openai.com/v1/chat/completions"
api2d_endpoint = "https://openai.api2d.net/v1/chat/completions"
newbing_endpoint = "wss://sydney.bing.com/sydney/ChatHub"
# 兼容旧版的配置
try:
API_URL, = get_conf("API_URL")
if API_URL != "https://api.openai.com/v1/chat/completions":
openai_endpoint = API_URL
print("警告!API_URL配置选项将被弃用,请更换为API_URL_REDIRECT配置")
except:
pass
# 新版配置
if openai_endpoint in API_URL_REDIRECT: openai_endpoint = API_URL_REDIRECT[openai_endpoint]
if api2d_endpoint in API_URL_REDIRECT: api2d_endpoint = API_URL_REDIRECT[api2d_endpoint]
if newbing_endpoint in API_URL_REDIRECT: newbing_endpoint = API_URL_REDIRECT[newbing_endpoint]
# 获取tokenizer
tokenizer_gpt35 = LazyloadTiktoken("gpt-3.5-turbo")
tokenizer_gpt4 = LazyloadTiktoken("gpt-4")
get_token_num_gpt35 = lambda txt: len(tokenizer_gpt35.encode(txt, disallowed_special=()))
get_token_num_gpt4 = lambda txt: len(tokenizer_gpt4.encode(txt, disallowed_special=()))
model_info = {
# openai
"gpt-3.5-turbo": {
"fn_with_ui": chatgpt_ui,
"fn_without_ui": chatgpt_noui,
"endpoint": openai_endpoint,
"max_token": 4096,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
"gpt-3.5-turbo-16k": {
"fn_with_ui": chatgpt_ui,
"fn_without_ui": chatgpt_noui,
"endpoint": openai_endpoint,
"max_token": 1024*16,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
"gpt-3.5-turbo-0613": {
"fn_with_ui": chatgpt_ui,
"fn_without_ui": chatgpt_noui,
"endpoint": openai_endpoint,
"max_token": 4096,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
"gpt-3.5-turbo-16k-0613": {
"fn_with_ui": chatgpt_ui,
"fn_without_ui": chatgpt_noui,
"endpoint": openai_endpoint,
"max_token": 1024 * 16,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
"gpt-4": {
"fn_with_ui": chatgpt_ui,
"fn_without_ui": chatgpt_noui,
"endpoint": openai_endpoint,
"max_token": 8192,
"tokenizer": tokenizer_gpt4,
"token_cnt": get_token_num_gpt4,
},
# azure openai
"azure-gpt35":{
"fn_with_ui": azure_ui,
"fn_without_ui": azure_noui,
"endpoint": get_conf("AZURE_ENDPOINT"),
"max_token": 4096,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
# api_2d
"api2d-gpt-3.5-turbo": {
"fn_with_ui": chatgpt_ui,
"fn_without_ui": chatgpt_noui,
"endpoint": api2d_endpoint,
"max_token": 4096,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
"api2d-gpt-4": {
"fn_with_ui": chatgpt_ui,
"fn_without_ui": chatgpt_noui,
"endpoint": api2d_endpoint,
"max_token": 8192,
"tokenizer": tokenizer_gpt4,
"token_cnt": get_token_num_gpt4,
},
# 将 chatglm 直接对齐到 chatglm2
"chatglm": {
"fn_with_ui": chatglm_ui,
"fn_without_ui": chatglm_noui,
"endpoint": None,
"max_token": 1024,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
"chatglm2": {
"fn_with_ui": chatglm_ui,
"fn_without_ui": chatglm_noui,
"endpoint": None,
"max_token": 1024,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
# newbing
"newbing": {
"fn_with_ui": newbing_ui,
"fn_without_ui": newbing_noui,
"endpoint": newbing_endpoint,
"max_token": 4096,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
}
AVAIL_LLM_MODELS, = get_conf("AVAIL_LLM_MODELS")
if "jittorllms_rwkv" in AVAIL_LLM_MODELS:
from .bridge_jittorllms_rwkv import predict_no_ui_long_connection as rwkv_noui
from .bridge_jittorllms_rwkv import predict as rwkv_ui
model_info.update({
"jittorllms_rwkv": {
"fn_with_ui": rwkv_ui,
"fn_without_ui": rwkv_noui,
"endpoint": None,
"max_token": 1024,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
})
if "jittorllms_llama" in AVAIL_LLM_MODELS:
from .bridge_jittorllms_llama import predict_no_ui_long_connection as llama_noui
from .bridge_jittorllms_llama import predict as llama_ui
model_info.update({
"jittorllms_llama": {
"fn_with_ui": llama_ui,
"fn_without_ui": llama_noui,
"endpoint": None,
"max_token": 1024,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
})
if "jittorllms_pangualpha" in AVAIL_LLM_MODELS:
from .bridge_jittorllms_pangualpha import predict_no_ui_long_connection as pangualpha_noui
from .bridge_jittorllms_pangualpha import predict as pangualpha_ui
model_info.update({
"jittorllms_pangualpha": {
"fn_with_ui": pangualpha_ui,
"fn_without_ui": pangualpha_noui,
"endpoint": None,
"max_token": 1024,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
})
if "moss" in AVAIL_LLM_MODELS:
from .bridge_moss import predict_no_ui_long_connection as moss_noui
from .bridge_moss import predict as moss_ui
model_info.update({
"moss": {
"fn_with_ui": moss_ui,
"fn_without_ui": moss_noui,
"endpoint": None,
"max_token": 1024,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
})
if "stack-claude" in AVAIL_LLM_MODELS:
from .bridge_stackclaude import predict_no_ui_long_connection as claude_noui
from .bridge_stackclaude import predict as claude_ui
# claude
model_info.update({
"stack-claude": {
"fn_with_ui": claude_ui,
"fn_without_ui": claude_noui,
"endpoint": None,
"max_token": 8192,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
}
})
if "newbing-free" in AVAIL_LLM_MODELS:
try:
from .bridge_newbingfree import predict_no_ui_long_connection as newbingfree_noui
from .bridge_newbingfree import predict as newbingfree_ui
# claude
model_info.update({
"newbing-free": {
"fn_with_ui": newbingfree_ui,
"fn_without_ui": newbingfree_noui,
"endpoint": newbing_endpoint,
"max_token": 4096,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
}
})
except:
print(trimmed_format_exc())
def LLM_CATCH_EXCEPTION(f):
"""
装饰器函数,将错误显示出来
"""
def decorated(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience):
try:
return f(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience)
except Exception as e:
tb_str = '\n```\n' + trimmed_format_exc() + '\n```\n'
observe_window[0] = tb_str
return tb_str
return decorated
def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience=False):
"""
发送至LLM,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
inputs:
是本次问询的输入
sys_prompt:
系统静默prompt
llm_kwargs:
LLM的内部调优参数
history:
是之前的对话列表
observe_window = None:
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
"""
import threading, time, copy
model = llm_kwargs['llm_model']
n_model = 1
if '&' not in model:
assert not model.startswith("tgui"), "TGUI不支持函数插件的实现"
# 如果只询问1个大语言模型:
method = model_info[model]["fn_without_ui"]
return method(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience)
else:
# 如果同时询问多个大语言模型:
executor = ThreadPoolExecutor(max_workers=4)
models = model.split('&')
n_model = len(models)
window_len = len(observe_window)
assert window_len==3
window_mutex = [["", time.time(), ""] for _ in range(n_model)] + [True]
futures = []
for i in range(n_model):
model = models[i]
method = model_info[model]["fn_without_ui"]
llm_kwargs_feedin = copy.deepcopy(llm_kwargs)
llm_kwargs_feedin['llm_model'] = model
future = executor.submit(LLM_CATCH_EXCEPTION(method), inputs, llm_kwargs_feedin, history, sys_prompt, window_mutex[i], console_slience)
futures.append(future)
def mutex_manager(window_mutex, observe_window):
while True:
time.sleep(0.25)
if not window_mutex[-1]: break
# 看门狗(watchdog)
for i in range(n_model):
window_mutex[i][1] = observe_window[1]
# 观察窗(window)
chat_string = []
for i in range(n_model):
chat_string.append( f"【{str(models[i])} 说】: <font color=\"{colors[i]}\"> {window_mutex[i][0]} </font>" )
res = '<br/><br/>\n\n---\n\n'.join(chat_string)
# # # # # # # # # # #
observe_window[0] = res
t_model = threading.Thread(target=mutex_manager, args=(window_mutex, observe_window), daemon=True)
t_model.start()
return_string_collect = []
while True:
worker_done = [h.done() for h in futures]
if all(worker_done):
executor.shutdown()
break
time.sleep(1)
for i, future in enumerate(futures): # wait and get
return_string_collect.append( f"【{str(models[i])} 说】: <font color=\"{colors[i]}\"> {future.result()} </font>" )
window_mutex[-1] = False # stop mutex thread
res = '<br/><br/>\n\n---\n\n'.join(return_string_collect)
return res
def predict(inputs, llm_kwargs, *args, **kwargs):
"""
发送至LLM,流式获取输出。
用于基础的对话功能。
inputs 是本次问询的输入
top_p, temperature是LLM的内部调优参数
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
additional_fn代表点击的哪个按钮,按钮见functional.py
"""
method = model_info[llm_kwargs['llm_model']]["fn_with_ui"]
yield from method(inputs, llm_kwargs, *args, **kwargs)
|