Spaces:
Running
Running
from toolbox import CatchException, update_ui, get_conf, select_api_key, get_log_folder | |
from crazy_functions.multi_stage.multi_stage_utils import GptAcademicState | |
def gen_image(llm_kwargs, prompt, resolution="1024x1024", model="dall-e-2", quality=None, style=None): | |
import requests, json, time, os | |
from request_llms.bridge_all import model_info | |
proxies = get_conf('proxies') | |
# Set up OpenAI API key and model | |
api_key = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model']) | |
chat_endpoint = model_info[llm_kwargs['llm_model']]['endpoint'] | |
# 'https://api.openai.com/v1/chat/completions' | |
img_endpoint = chat_endpoint.replace('chat/completions','images/generations') | |
# # Generate the image | |
url = img_endpoint | |
headers = { | |
'Authorization': f"Bearer {api_key}", | |
'Content-Type': 'application/json' | |
} | |
data = { | |
'prompt': prompt, | |
'n': 1, | |
'size': resolution, | |
'model': model, | |
'response_format': 'url' | |
} | |
if quality is not None: | |
data['quality'] = quality | |
if style is not None: | |
data['style'] = style | |
response = requests.post(url, headers=headers, json=data, proxies=proxies) | |
print(response.content) | |
try: | |
image_url = json.loads(response.content.decode('utf8'))['data'][0]['url'] | |
except: | |
raise RuntimeError(response.content.decode()) | |
# 文件保存到本地 | |
r = requests.get(image_url, proxies=proxies) | |
file_path = f'{get_log_folder()}/image_gen/' | |
os.makedirs(file_path, exist_ok=True) | |
file_name = 'Image' + time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + '.png' | |
with open(file_path+file_name, 'wb+') as f: f.write(r.content) | |
return image_url, file_path+file_name | |
def edit_image(llm_kwargs, prompt, image_path, resolution="1024x1024", model="dall-e-2"): | |
import requests, json, time, os | |
from request_llms.bridge_all import model_info | |
proxies = get_conf('proxies') | |
api_key = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model']) | |
chat_endpoint = model_info[llm_kwargs['llm_model']]['endpoint'] | |
# 'https://api.openai.com/v1/chat/completions' | |
img_endpoint = chat_endpoint.replace('chat/completions','images/edits') | |
# # Generate the image | |
url = img_endpoint | |
n = 1 | |
headers = { | |
'Authorization': f"Bearer {api_key}", | |
} | |
make_transparent(image_path, image_path+'.tsp.png') | |
make_square_image(image_path+'.tsp.png', image_path+'.tspsq.png') | |
resize_image(image_path+'.tspsq.png', image_path+'.ready.png', max_size=1024) | |
image_path = image_path+'.ready.png' | |
with open(image_path, 'rb') as f: | |
file_content = f.read() | |
files = { | |
'image': (os.path.basename(image_path), file_content), | |
# 'mask': ('mask.png', open('mask.png', 'rb')) | |
'prompt': (None, prompt), | |
"n": (None, str(n)), | |
'size': (None, resolution), | |
} | |
response = requests.post(url, headers=headers, files=files, proxies=proxies) | |
print(response.content) | |
try: | |
image_url = json.loads(response.content.decode('utf8'))['data'][0]['url'] | |
except: | |
raise RuntimeError(response.content.decode()) | |
# 文件保存到本地 | |
r = requests.get(image_url, proxies=proxies) | |
file_path = f'{get_log_folder()}/image_gen/' | |
os.makedirs(file_path, exist_ok=True) | |
file_name = 'Image' + time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + '.png' | |
with open(file_path+file_name, 'wb+') as f: f.write(r.content) | |
return image_url, file_path+file_name | |
def 图片生成_DALLE2(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port): | |
""" | |
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径 | |
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行 | |
plugin_kwargs 插件模型的参数,暂时没有用武之地 | |
chatbot 聊天显示框的句柄,用于显示给用户 | |
history 聊天历史,前情提要 | |
system_prompt 给gpt的静默提醒 | |
web_port 当前软件运行的端口号 | |
""" | |
history = [] # 清空历史,以免输入溢出 | |
if prompt.strip() == "": | |
chatbot.append((prompt, "[Local Message] 图像生成提示为空白,请在“输入区”输入图像生成提示。")) | |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 界面更新 | |
return | |
chatbot.append(("您正在调用“图像生成”插件。", "[Local Message] 生成图像, 请先把模型切换至gpt-*。如果中文Prompt效果不理想, 请尝试英文Prompt。正在处理中 .....")) | |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 由于请求gpt需要一段时间,我们先及时地做一次界面更新 | |
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg") | |
resolution = plugin_kwargs.get("advanced_arg", '1024x1024') | |
image_url, image_path = gen_image(llm_kwargs, prompt, resolution) | |
chatbot.append([prompt, | |
f'图像中转网址: <br/>`{image_url}`<br/>'+ | |
f'中转网址预览: <br/><div align="center"><img src="{image_url}"></div>' | |
f'本地文件地址: <br/>`{image_path}`<br/>'+ | |
f'本地文件预览: <br/><div align="center"><img src="file={image_path}"></div>' | |
]) | |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 界面更新 | |
def 图片生成_DALLE3(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port): | |
history = [] # 清空历史,以免输入溢出 | |
if prompt.strip() == "": | |
chatbot.append((prompt, "[Local Message] 图像生成提示为空白,请在“输入区”输入图像生成提示。")) | |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 界面更新 | |
return | |
chatbot.append(("您正在调用“图像生成”插件。", "[Local Message] 生成图像, 请先把模型切换至gpt-*。如果中文Prompt效果不理想, 请尝试英文Prompt。正在处理中 .....")) | |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 由于请求gpt需要一段时间,我们先及时地做一次界面更新 | |
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg") | |
resolution_arg = plugin_kwargs.get("advanced_arg", '1024x1024-standard-vivid').lower() | |
parts = resolution_arg.split('-') | |
resolution = parts[0] # 解析分辨率 | |
quality = 'standard' # 质量与风格默认值 | |
style = 'vivid' | |
# 遍历检查是否有额外参数 | |
for part in parts[1:]: | |
if part in ['hd', 'standard']: | |
quality = part | |
elif part in ['vivid', 'natural']: | |
style = part | |
image_url, image_path = gen_image(llm_kwargs, prompt, resolution, model="dall-e-3", quality=quality, style=style) | |
chatbot.append([prompt, | |
f'图像中转网址: <br/>`{image_url}`<br/>'+ | |
f'中转网址预览: <br/><div align="center"><img src="{image_url}"></div>' | |
f'本地文件地址: <br/>`{image_path}`<br/>'+ | |
f'本地文件预览: <br/><div align="center"><img src="file={image_path}"></div>' | |
]) | |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 界面更新 | |
class ImageEditState(GptAcademicState): | |
# 尚未完成 | |
def get_image_file(self, x): | |
import os, glob | |
if len(x) == 0: return False, None | |
if not os.path.exists(x): return False, None | |
if x.endswith('.png'): return True, x | |
file_manifest = [f for f in glob.glob(f'{x}/**/*.png', recursive=True)] | |
confirm = (len(file_manifest) >= 1 and file_manifest[0].endswith('.png') and os.path.exists(file_manifest[0])) | |
file = None if not confirm else file_manifest[0] | |
return confirm, file | |
def lock_plugin(self, chatbot): | |
chatbot._cookies['lock_plugin'] = 'crazy_functions.图片生成->图片修改_DALLE2' | |
self.dump_state(chatbot) | |
def unlock_plugin(self, chatbot): | |
self.reset() | |
chatbot._cookies['lock_plugin'] = None | |
self.dump_state(chatbot) | |
def get_resolution(self, x): | |
return (x in ['256x256', '512x512', '1024x1024']), x | |
def get_prompt(self, x): | |
confirm = (len(x)>=5) and (not self.get_resolution(x)[0]) and (not self.get_image_file(x)[0]) | |
return confirm, x | |
def reset(self): | |
self.req = [ | |
{'value':None, 'description': '请先上传图像(必须是.png格式), 然后再次点击本插件', 'verify_fn': self.get_image_file}, | |
{'value':None, 'description': '请输入分辨率,可选:256x256, 512x512 或 1024x1024, 然后再次点击本插件', 'verify_fn': self.get_resolution}, | |
{'value':None, 'description': '请输入修改需求,建议您使用英文提示词, 然后再次点击本插件', 'verify_fn': self.get_prompt}, | |
] | |
self.info = "" | |
def feed(self, prompt, chatbot): | |
for r in self.req: | |
if r['value'] is None: | |
confirm, res = r['verify_fn'](prompt) | |
if confirm: | |
r['value'] = res | |
self.dump_state(chatbot) | |
break | |
return self | |
def next_req(self): | |
for r in self.req: | |
if r['value'] is None: | |
return r['description'] | |
return "已经收集到所有信息" | |
def already_obtained_all_materials(self): | |
return all([x['value'] is not None for x in self.req]) | |
def 图片修改_DALLE2(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port): | |
# 尚未完成 | |
history = [] # 清空历史 | |
state = ImageEditState.get_state(chatbot, ImageEditState) | |
state = state.feed(prompt, chatbot) | |
state.lock_plugin(chatbot) | |
if not state.already_obtained_all_materials(): | |
chatbot.append(["图片修改\n\n1. 上传图片(图片中需要修改的位置用橡皮擦擦除为纯白色,即RGB=255,255,255)\n2. 输入分辨率 \n3. 输入修改需求", state.next_req()]) | |
yield from update_ui(chatbot=chatbot, history=history) | |
return | |
image_path = state.req[0]['value'] | |
resolution = state.req[1]['value'] | |
prompt = state.req[2]['value'] | |
chatbot.append(["图片修改, 执行中", f"图片:`{image_path}`<br/>分辨率:`{resolution}`<br/>修改需求:`{prompt}`"]) | |
yield from update_ui(chatbot=chatbot, history=history) | |
image_url, image_path = edit_image(llm_kwargs, prompt, image_path, resolution) | |
chatbot.append([prompt, | |
f'图像中转网址: <br/>`{image_url}`<br/>'+ | |
f'中转网址预览: <br/><div align="center"><img src="{image_url}"></div>' | |
f'本地文件地址: <br/>`{image_path}`<br/>'+ | |
f'本地文件预览: <br/><div align="center"><img src="file={image_path}"></div>' | |
]) | |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 界面更新 | |
state.unlock_plugin(chatbot) | |
def make_transparent(input_image_path, output_image_path): | |
from PIL import Image | |
image = Image.open(input_image_path) | |
image = image.convert("RGBA") | |
data = image.getdata() | |
new_data = [] | |
for item in data: | |
if item[0] == 255 and item[1] == 255 and item[2] == 255: | |
new_data.append((255, 255, 255, 0)) | |
else: | |
new_data.append(item) | |
image.putdata(new_data) | |
image.save(output_image_path, "PNG") | |
def resize_image(input_path, output_path, max_size=1024): | |
from PIL import Image | |
with Image.open(input_path) as img: | |
width, height = img.size | |
if width > max_size or height > max_size: | |
if width >= height: | |
new_width = max_size | |
new_height = int((max_size / width) * height) | |
else: | |
new_height = max_size | |
new_width = int((max_size / height) * width) | |
resized_img = img.resize(size=(new_width, new_height)) | |
resized_img.save(output_path) | |
else: | |
img.save(output_path) | |
def make_square_image(input_path, output_path): | |
from PIL import Image | |
with Image.open(input_path) as img: | |
width, height = img.size | |
size = max(width, height) | |
new_img = Image.new("RGBA", (size, size), color="black") | |
new_img.paste(img, ((size - width) // 2, (size - height) // 2)) | |
new_img.save(output_path) | |