File size: 10,925 Bytes
aab1f32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import sys
import gradio as gr
import os
import shutil
import json
import argparse
from PIL import Image
import subprocess
from sparseags.dust3r_utils import infer_dust3r
from run import main
import functools
sys.path[0] = sys.path[0] + '/dust3r'
from dust3r.model import AsymmetricCroCo3DStereo
def info_fn():
gr.Info("Data preprocessing done!")
def get_select_index(evt: gr.SelectData):
index = evt.index
cate_list = ['toy', 'butter', 'robot', 'jordan', 'eagle']
args.num_views = len(examples_full[index][0])
args.category = cate_list[index]
return examples_full[index][0], examples_full[index][0]
# check if there is a picture uploaded or selected
def check_img_input(control_image):
if control_image is None:
raise gr.Error("Please select or upload an input image")
def preprocess(args, dust3r_model, image_block: list):
if os.path.exists('data/demo/custom'):
shutil.rmtree('data/demo/custom')
if os.path.exists('output/demo/custom'):
shutil.rmtree('output/demo/custom')
os.makedirs('data/demo/custom/source')
os.makedirs('data/demo/custom/processed')
file_names = []
for file_path in image_block:
file_name = file_path.split("/")[-1]
img_pil = Image.open(file_path)
# save image to a designated path
try:
img_pil.save(os.path.join('data/demo/custom', file_name))
except OSError:
img_pil = img_pil.convert('RGB')
img_pil.save(os.path.join('data/demo/custom', file_name))
file_names.append(os.path.join('data/demo/custom/source', file_name.split('.')[0] + '.png'))
# crop and resize image
print(f"python process.py {os.path.join('data/demo/custom', file_name)}")
subprocess.run(f"python process.py {os.path.join('data/demo/custom', file_name)}", shell=True)
# predict initial camera poses from dust3r
camera_data = infer_dust3r(dust3r_model, file_names)
with open(os.path.join('data/demo/custom', 'cameras.json'), "w") as f:
json.dump(camera_data, f)
args.num_views = len(file_names)
args.category = "custom"
processed_image_block = []
for file_path in image_block:
out_base = os.path.basename(file_path).split('.')[0]
out_rgba = os.path.join('data/demo/custom/processed', out_base + '_rgba.png')
processed_image_block.append(out_rgba)
return processed_image_block
def run_single_reconstruction(image_block: list):
args.enable_loop = False
main(args)
return f'output/demo/{args.category}/round_0/{args.category}.glb'
def run_full_reconstruction(image_block: list):
args.enable_loop = True
main(args)
if os.path.exists(f'output/demo/{args.category}/cameras_final_recovered.json'):
return f'output/demo/{args.category}/check_recovered_poses/{args.category}.glb'
elif os.path.exists(f'output/demo/{args.category}/cameras_final_init.json'):
return f'output/demo/{args.category}/reconsider_init_poses/{args.category}.glb'
else:
return f'output/demo/{args.category}/round_1/{args.category}.glb'
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--output', default='output/demo', type=str, help='Directory where obj files will be saved')
parser.add_argument('--category', default='jordan', type=str, help='Directory where obj files will be saved')
parser.add_argument('--num_pts', default=25000, type=int, help='Number of points at initialization')
parser.add_argument('--num_views', default=8, type=int, help='Number of input images')
parser.add_argument('--mesh_format', default='glb', type=str, help='Format of output mesh')
parser.add_argument('--enable_loop', default=True, help='Enable the loop-based strategy to detect and correct outliers')
parser.add_argument('--config', default='navi.yaml', type=str, help='Path to config file')
args = parser.parse_args()
_TITLE = '''Sparse-view Pose Estimation and Reconstruction via Analysis by Generative Synthesis'''
_DESCRIPTION = '''
<div>
<a style="display:inline-block" href="https://qitaozhao.github.io/SparseAGS"><img src='https://img.shields.io/badge/public_website-8A2BE2'></a>
<a style="display:inline-block; margin-left: .5em" href="https://openreview.net/pdf?id=wgpmDyJgsg"><img src="https://img.shields.io/badge/2309.16653-f9f7f7?logo="></a>
<a style="display:inline-block; margin-left: .5em" href='https://github.com/dreamgaussian/dreamgaussian'><img src='https://img.shields.io/github/stars/dreamgaussian/dreamgaussian?style=social'/></a>
</div>
Given a set of unposed input images, SparseAGS jointly infers the corresponding camera poses and underlying 3D, allowing high-fidelity 3D inference in the wild.
'''
_IMG_USER_GUIDE = "Once you see the preprocessed images, you can click **Run Single 3D Reconstruction**. \
If the reconstructed 3D looks bad, you can try to click **Outlier Removal & Correction** to run the full method to deal with outliers camera poses."
# load images in 'data/demo' folder as examples
examples_full = []
for example in ['toy', 'butter', 'robot', 'jordan', 'eagle']:
example_folder = os.path.join(os.path.dirname(__file__), 'data/demo', example, 'processed')
example_fns = os.listdir(example_folder)
example_fns.sort()
examples = [os.path.join(example_folder, x) for x in example_fns if x.endswith('.png')]
examples_full.append([examples])
dust3r_model = AsymmetricCroCo3DStereo.from_pretrained('naver/DUSt3R_ViTLarge_BaseDecoder_224_linear').to('cuda')
print("Loaded DUSt3R model!")
preprocess = functools.partial(preprocess, args, dust3r_model)
# get_select_index = functools.partial(get_select_index, args)
# Compose demo layout & data flow
with gr.Blocks(title=_TITLE, theme=gr.themes.Soft()) as demo:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown('# ' + _TITLE)
gr.Markdown(_DESCRIPTION)
# Image-to-3D
with gr.Row(variant='panel'):
with gr.Column(scale=5):
# image_block = gr.Image(type='pil', image_mode='RGBA', height=290, label='Input image')#, tool=None)
image_block = gr.File(file_count="multiple")
preprocess_btn = gr.Button("Preprocess Images")
# elevation_slider = gr.Slider(-90, 90, value=0, step=1, label='Estimated elevation angle')
gr.Markdown(
"You have two options to run our model! (1) Upload your own images in the block above and then click **Preprocess Images** to initialize camera poses using \
DUSt3R; (2) Choose one of the preprocessed examples below (no need to click **Preprocess Images**).")
gallery = gr.Gallery(
value=[example[0][0] for example in examples_full], label="Examples", show_label=True, elem_id="gallery"
, columns=[5], rows=[1], object_fit="contain", height="256", preview=None, allow_preview=None)
preprocessed_data = gr.Gallery(
label="Preprocessed images", show_label=True, elem_id="gallery"
, columns=[4], rows=[2], object_fit="contain", height="256", preview=None, allow_preview=None)
with gr.Row(variant='panel'):
run_single_btn = gr.Button("Run Single 3D Reconstruction")
outlier_detect_btn = gr.Button("Outlier Removal & Correction")
img_guide_text = gr.Markdown(_IMG_USER_GUIDE, visible=True)
with gr.Column(scale=5):
obj_single_recon = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model (Single Reconstruction)")
obj_outlier_detect = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model (Full Method, w/ Outlier Removal & Correction)")
# Select an preprocessed example
gallery.select(get_select_index, None, outputs=[image_block, preprocessed_data])
# Upload you own images and run preprocessing
preprocess_btn.click(preprocess, inputs=[image_block], outputs=[preprocessed_data], queue=False, show_progress='full').success(info_fn, None, None)
# Do single 3D reconstruction
run_single_btn.click(check_img_input, inputs=[image_block], queue=False).success(run_single_reconstruction,
inputs=[image_block],
# preprocess_chk],
# elevation_slider],
outputs=[obj_single_recon])
# Do loop-based outlier removal & correction
outlier_detect_btn.click(check_img_input, inputs=[image_block], queue=False).success(run_full_reconstruction,
inputs=[image_block],
# preprocess_chk],
# elevation_slider],
outputs=[obj_outlier_detect])
demo.queue().launch(share=True) |