File size: 16,295 Bytes
4f54ccd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
from diffusers import DDIMScheduler
import torchvision.transforms.functional as TF

import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torchvision
from torchvision.utils import save_image
from torchvision import transforms
import torch.nn.functional as F
from einops import rearrange

import sys
sys.path.append('./')

from sparseags.guidance_utils.zero123 import Zero123Pipeline


name_mapping = {
    "model.diffusion_model.input_blocks.1.1.": "down_blocks.0.attentions.0.",
    "model.diffusion_model.input_blocks.2.1.": "down_blocks.0.attentions.1.",
    "model.diffusion_model.input_blocks.4.1.": "down_blocks.1.attentions.0.",
    "model.diffusion_model.input_blocks.5.1.": "down_blocks.1.attentions.1.",
    "model.diffusion_model.input_blocks.7.1.": "down_blocks.2.attentions.0.",
    "model.diffusion_model.input_blocks.8.1.": "down_blocks.2.attentions.1.",
    "model.diffusion_model.middle_block.1.": "mid_block.attentions.0.",
    "model.diffusion_model.output_blocks.3.1.": "up_blocks.1.attentions.0.",
    "model.diffusion_model.output_blocks.4.1.": "up_blocks.1.attentions.1.",
    "model.diffusion_model.output_blocks.5.1.": "up_blocks.1.attentions.2.",
    "model.diffusion_model.output_blocks.6.1.": "up_blocks.2.attentions.0.",
    "model.diffusion_model.output_blocks.7.1.": "up_blocks.2.attentions.1.",
    "model.diffusion_model.output_blocks.8.1.": "up_blocks.2.attentions.2.",
    "model.diffusion_model.output_blocks.9.1.": "up_blocks.3.attentions.0.",
    "model.diffusion_model.output_blocks.10.1.": "up_blocks.3.attentions.1.",
    "model.diffusion_model.output_blocks.11.1.": "up_blocks.3.attentions.2.",
}

class Zero123(nn.Module):
    def __init__(self, device, fp16=True, t_range=[0.02, 0.98], model_key="ashawkey/zero123-xl-diffusers"):
        super().__init__()

        self.device = device
        self.fp16 = fp16
        self.dtype = torch.float16 if fp16 else torch.float32

        self.pipe = Zero123Pipeline.from_pretrained(            
            model_key,
            trust_remote_code=True,
            torch_dtype=self.dtype,
        ).to(self.device)

        # load weights from the checkpoint
        ckpt_path = "checkpoints/zero123_6dof_23k.ckpt"
        print(f'[INFO] loading checkpoint from {ckpt_path} ...')
        old_state = torch.load(ckpt_path)
        pretrained_weights = old_state['state_dict']['cc_projection.weight']
        pretrained_biases = old_state['state_dict']['cc_projection.bias']
        linear_layer = torch.nn.Linear(768 + 18, 768)
        linear_layer.weight.data = pretrained_weights
        linear_layer.bias.data = pretrained_biases
        self.pipe.clip_camera_projection.proj = linear_layer.to(dtype=self.dtype, device=self.device)

        for name in list(old_state['state_dict'].keys()):
            for k, v in name_mapping.items():
                if k in name:
                    old_state['state_dict'][name.replace(k, name_mapping[k])] = old_state['state_dict'][name].to(dtype=self.dtype, device=self.device)

        m, u = self.pipe.unet.load_state_dict(old_state['state_dict'], strict=False)

        # stable-zero123 has a different camera embedding
        self.use_stable_zero123 = 'stable' in model_key

        self.pipe.image_encoder.eval()
        self.pipe.vae.eval()
        self.pipe.unet.eval()
        self.pipe.clip_camera_projection.eval()

        self.vae = self.pipe.vae
        self.unet = self.pipe.unet

        self.pipe.set_progress_bar_config(disable=True)

        self.scheduler = DDIMScheduler.from_config(self.pipe.scheduler.config)
        self.num_train_timesteps = self.scheduler.config.num_train_timesteps

        self.min_step = int(self.num_train_timesteps * t_range[0])
        self.max_step = int(self.num_train_timesteps * t_range[1])
        self.alphas = self.scheduler.alphas_cumprod.to(self.device) # for convenience

        self.embeddings = None

    @torch.no_grad()
    def get_img_embeds(self, x):
        # x: image tensor in [0, 1]
        x = F.interpolate(x, (256, 256), mode='bilinear', align_corners=False)
        x_pil = [TF.to_pil_image(image) for image in x]
        x_clip = self.pipe.feature_extractor(images=x_pil, return_tensors="pt").pixel_values.to(device=self.device, dtype=self.dtype)
        c = self.pipe.image_encoder(x_clip).image_embeds
        v = self.encode_imgs(x.to(self.dtype)) / self.vae.config.scaling_factor
        self.embeddings = [c, v]

    def get_cam_embeddings(self, polar, azimuth, radius, default_elevation=0):
        if self.use_stable_zero123:
            T = np.stack([np.deg2rad(polar), np.sin(np.deg2rad(azimuth)), np.cos(np.deg2rad(azimuth)), np.deg2rad([90 + default_elevation] * len(polar))], axis=-1)
        else:
            # original zero123 camera embedding
            T = np.stack([np.deg2rad(polar), np.sin(np.deg2rad(azimuth)), np.cos(np.deg2rad(azimuth)), radius], axis=-1)
        T = torch.from_numpy(T).unsqueeze(1).to(dtype=self.dtype, device=self.device) # [8, 1, 4]
        return T

    def get_cam_embeddings_6D(self, target_RT, cond_RT):
        T_target = torch.from_numpy(target_RT["c2w"])
        focal_len_target = torch.from_numpy(target_RT["focal_length"])

        T_cond = torch.from_numpy(cond_RT["c2w"])
        focal_len_cond = torch.from_numpy(cond_RT["focal_length"])
    
        focal_len = focal_len_target / focal_len_cond

        d_T = torch.linalg.inv(T_target) @ T_cond
        d_T = torch.cat([d_T.flatten(), torch.log(focal_len)])
        return d_T.unsqueeze(0).unsqueeze(0).to(dtype=self.dtype, device=self.device)

    @torch.no_grad()
    def refine(self, pred_rgb, cam_embed, 
               guidance_scale=5, steps=50, strength=0.8, idx=None
        ):

        ######## Slight modification ########
        if pred_rgb is not None:
            batch_size = pred_rgb.shape[0]
        else:
            batch_size = 1

        self.scheduler.set_timesteps(steps)

        if strength == 0:
            init_step = 0
            latents = torch.randn((1, 4, 32, 32), device=self.device, dtype=self.dtype)
        else:
            init_step = int(steps * strength)
            pred_rgb_256 = F.interpolate(pred_rgb, (256, 256), mode='bilinear', align_corners=False)
            latents = self.encode_imgs(pred_rgb_256.to(self.dtype))
            latents = self.scheduler.add_noise(latents, torch.randn_like(latents), self.scheduler.timesteps[init_step])

        T = cam_embed
        if idx is not None:
            cc_emb = torch.cat([self.embeddings[0][idx].repeat(batch_size, 1, 1), T], dim=-1)
        else:
            cc_emb = torch.cat([self.embeddings[0].repeat(batch_size, 1, 1), T], dim=-1)
        cc_emb = self.pipe.clip_camera_projection(cc_emb)
        cc_emb = torch.cat([cc_emb, torch.zeros_like(cc_emb)], dim=0)

        if idx is not None:
            vae_emb = self.embeddings[1][idx].repeat(batch_size, 1, 1, 1)
        else:
            vae_emb = self.embeddings[1].repeat(batch_size, 1, 1, 1)
        vae_emb = torch.cat([vae_emb, torch.zeros_like(vae_emb)], dim=0)

        for i, t in enumerate(self.scheduler.timesteps[init_step:]):
            
            x_in = torch.cat([latents] * 2)
            t_in = torch.cat([t.view(1)]).to(self.device)

            noise_pred = self.unet(
                torch.cat([x_in, vae_emb], dim=1),
                t_in.to(self.unet.dtype),
                encoder_hidden_states=cc_emb,
            ).sample

            noise_pred_cond, noise_pred_uncond = noise_pred.chunk(2)
            noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
            
            latents = self.scheduler.step(noise_pred, t, latents).prev_sample

        imgs = self.decode_latents(latents) # [1, 3, 256, 256]
        return imgs
    
    def train_step(self, pred_rgb, polar, azimuth, radius, step_ratio=None, guidance_scale=5, as_latent=False):
        # pred_rgb: tensor [1, 3, H, W] in [0, 1]

        batch_size = pred_rgb.shape[0]

        if as_latent:
            latents = F.interpolate(pred_rgb, (32, 32), mode='bilinear', align_corners=False) * 2 - 1
        else:
            pred_rgb_256 = F.interpolate(pred_rgb, (256, 256), mode='bilinear', align_corners=False)
            latents = self.encode_imgs(pred_rgb_256.to(self.dtype))

        if step_ratio is not None:
            # dreamtime-like
            # t = self.max_step - (self.max_step - self.min_step) * np.sqrt(step_ratio)
            t = np.round((1 - step_ratio) * self.num_train_timesteps).clip(self.min_step, self.max_step)
            t = torch.full((batch_size,), t, dtype=torch.long, device=self.device)
        else:
            t = torch.randint(self.min_step, self.max_step + 1, (batch_size,), dtype=torch.long, device=self.device)

        w = (1 - self.alphas[t]).view(batch_size, 1, 1, 1)

        with torch.no_grad():
            noise = torch.randn_like(latents)
            latents_noisy = self.scheduler.add_noise(latents, noise, t)

            x_in = torch.cat([latents_noisy] * 2)
            t_in = torch.cat([t] * 2)

            T = self.get_cam_embeddings(polar, azimuth, radius)
            cc_emb = torch.cat([self.embeddings[0].repeat(batch_size, 1, 1), T], dim=-1)
            cc_emb = self.pipe.clip_camera_projection(cc_emb)
            cc_emb = torch.cat([cc_emb, torch.zeros_like(cc_emb)], dim=0)

            vae_emb = self.embeddings[1].repeat(batch_size, 1, 1, 1)
            vae_emb = torch.cat([vae_emb, torch.zeros_like(vae_emb)], dim=0)

            noise_pred = self.unet(
                torch.cat([x_in, vae_emb], dim=1),
                t_in.to(self.unet.dtype),
                encoder_hidden_states=cc_emb,
            ).sample

        noise_pred_cond, noise_pred_uncond = noise_pred.chunk(2)
        noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)

        grad = w * (noise_pred - noise)
        grad = torch.nan_to_num(grad)

        target = (latents - grad).detach()
        loss = 0.5 * F.mse_loss(latents.float(), target, reduction='sum')

        return loss

    def angle_between(self, sph_v1, sph_v2):
        def sph2cart(sv):
            r, theta, phi = sv[0], sv[1], sv[2]
            # The polar representation is different from Stable-DreamFusion
            return torch.tensor([r * torch.cos(theta) * torch.cos(phi), r * torch.cos(theta) * torch.sin(phi), r * torch.sin(theta)])
        def unit_vector(v):
            return v / torch.linalg.norm(v)
        def angle_between_2_sph(sv1, sv2):
            v1, v2 = sph2cart(sv1), sph2cart(sv2)
            v1_u, v2_u = unit_vector(v1), unit_vector(v2)
            return torch.arccos(torch.clip(torch.dot(v1_u, v2_u), -1.0, 1.0))
        angles = torch.empty(len(sph_v1), len(sph_v2))
        for i, sv1 in enumerate(sph_v1):
            for j, sv2 in enumerate(sph_v2):
                angles[i][j] = angle_between_2_sph(sv1, sv2)
        return angles

    def batch_train_step(self, pred_rgb, target_RT, cond_cams, step_ratio=None, guidance_scale=5, as_latent=False, step=None):
        # pred_rgb: tensor [1, 3, H, W] in [0, 1]

        batch_size = pred_rgb.shape[0]

        if as_latent:
            latents = F.interpolate(pred_rgb, (32, 32), mode='bilinear', align_corners=False) * 2 - 1
        else:
            pred_rgb_256 = F.interpolate(pred_rgb, (256, 256), mode='bilinear', align_corners=False)
            latents = self.encode_imgs(pred_rgb_256.to(self.dtype))

        if step_ratio is not None:
            # dreamtime-like
            # t = self.max_step - (self.max_step - self.min_step) * np.sqrt(step_ratio)
            t = np.round((1 - step_ratio) * self.num_train_timesteps).clip(self.min_step, self.max_step)
            t = torch.full((batch_size,), t, dtype=torch.long, device=self.device)
        else:
            t = torch.randint(self.min_step, self.max_step + 1, (batch_size,), dtype=torch.long, device=self.device)

        w = (1 - self.alphas[t]).view(batch_size, 1, 1, 1)

        with torch.no_grad():
            noise = torch.randn_like(latents)
            latents_noisy = self.scheduler.add_noise(latents, noise, t)

            x_in = torch.cat([latents_noisy] * 2 * self.num_views)
            t_in = torch.cat([t] * 2 * self.num_views)

            cc_embs = []
            vae_embs = []
            noise_preds = []
            for idx in range(self.num_views):
                cond_RT = {
                    "c2w": cond_cams[idx].c2w,
                    "focal_length": cond_cams[idx].focal_length,
                }
                T = self.get_cam_embeddings_6D(target_RT, cond_RT)
                cc_emb = torch.cat([self.embeddings[0][idx].repeat(batch_size, 1, 1), T], dim=-1)
                cc_emb = self.pipe.clip_camera_projection(cc_emb)
                cc_emb = torch.cat([cc_emb, torch.zeros_like(cc_emb)], dim=0)

                vae_emb = self.embeddings[1][idx].repeat(batch_size, 1, 1, 1)
                vae_emb = torch.cat([vae_emb, torch.zeros_like(vae_emb)], dim=0)

                cc_embs.append(cc_emb)
                vae_embs.append(vae_emb)

            cc_emb = torch.cat(cc_embs, dim=0)
            vae_emb = torch.cat(vae_embs, dim=0)
            noise_pred = self.unet(
                torch.cat([x_in, vae_emb], dim=1),
                t_in.to(self.unet.dtype),
                encoder_hidden_states=cc_emb,
            ).sample

            noise_pred_chunks = noise_pred.chunk(self.num_views)
            for idx in range(self.num_views):
                noise_pred_cond, noise_pred_uncond = noise_pred_chunks[idx][0], noise_pred_chunks[idx][1]
                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
                noise_preds.append(noise_pred)

        noise_pred = torch.stack(noise_preds).sum(dim=0) / len(noise_preds) # self.num_views # Average over all views

        grad = w * (noise_pred - noise)
        grad = torch.nan_to_num(grad)

        target = (latents - grad).detach()
        loss = 0.5 * F.mse_loss(latents.float(), target, reduction='sum')

        return loss

    def decode_latents(self, latents):
        latents = 1 / self.vae.config.scaling_factor * latents

        imgs = self.vae.decode(latents).sample
        imgs = (imgs / 2 + 0.5).clamp(0, 1)

        return imgs

    def encode_imgs(self, imgs, mode=False):
        # imgs: [B, 3, H, W]

        imgs = 2 * imgs - 1

        posterior = self.vae.encode(imgs).latent_dist
        if mode:
            latents = posterior.mode()
        else:
            latents = posterior.sample() 
        latents = latents * self.vae.config.scaling_factor

        return latents


def process_im(im):
    if im.shape[-1] == 3:
        if self.bg_remover is None:
            self.bg_remover = rembg.new_session()
        im = rembg.remove(im, session=self.bg_remover)

    im = im.astype(np.float32) / 255.0

    input_mask = im[..., 3:]
    input_img = im[..., :3] * input_mask + (1 - input_mask)
    input_img = input_img[..., ::-1].copy()
    image = torch.from_numpy(input_img).permute(2, 0, 1).unsqueeze(0).contiguous().to(device)
    image = F.interpolate(image, (256, 256), mode='bilinear', align_corners=False)

    return image


def get_T_6d(target_RT, cond_RT, use_objaverse):
    if use_objaverse:
        new_row = torch.tensor([[0., 0., 0., 1.]])

        T_target = torch.from_numpy(target_RT) # world to cam matrix
        T_target = torch.cat((T_target, new_row), dim=0)
        T_target = torch.linalg.inv(T_target) # Cam to world matrix
        T_target[:3, :] = T_target[[1, 2, 0]]

        T_cond = torch.from_numpy(cond_RT)
        T_cond = torch.cat((T_cond, new_row), dim=0)
        T_cond = torch.linalg.inv(T_cond)
        T_cond[:3, :] = T_cond[[1, 2, 0]]

        focal_len = torch.tensor([1., 1.])

    else:
        T_target = torch.from_numpy(target_RT["c2w"])
        focal_len_target = torch.from_numpy(target_RT["focal_length"])

        T_cond = torch.from_numpy(cond_RT["c2w"])
        focal_len_cond = torch.from_numpy(cond_RT["focal_length"])
    
        focal_len = focal_len_target / focal_len_cond

    d_T = torch.linalg.inv(T_target) @ T_cond
    d_T = torch.cat([d_T.flatten(), torch.log(focal_len)])
    return d_T