File size: 23,069 Bytes
4f54ccd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 |
import os
import cv2
import gc
import copy
import tqdm
import torchvision
import shutil
import argparse
import numpy as np
from PIL import Image
from torchvision.utils import save_image
from omegaconf import OmegaConf
import matplotlib.pyplot as plt
import torch
import torch.nn.functional as F
from kiui.lpips import LPIPS
from liegroups.torch import SE3
import sys
sys.path.append('./')
from sparseags.render_utils.gs_renderer import CustomCamera
from sparseags.mesh_utils.mesh_renderer import Renderer
from sparseags.cam_utils import OrbitCamera, mat2latlon
def safe_normalize(x):
return x / x.norm(p=2, dim=-1, keepdim=True).clamp(min=1e-8)
def look_at(campos, target, opengl=True):
if not opengl:
forward_vector = safe_normalize(target - campos)
up_vector = torch.tensor([0, 1, 0], dtype=campos.dtype, device=campos.device).expand_as(forward_vector)
right_vector = safe_normalize(torch.cross(forward_vector, up_vector, dim=-1))
up_vector = safe_normalize(torch.cross(right_vector, forward_vector, dim=-1))
else:
forward_vector = safe_normalize(campos - target)
up_vector = torch.tensor([0, 1, 0], dtype=campos.dtype, device=campos.device).expand_as(forward_vector)
right_vector = safe_normalize(torch.cross(up_vector, forward_vector, dim=-1))
up_vector = safe_normalize(torch.cross(forward_vector, right_vector, dim=-1))
R = torch.stack([right_vector, up_vector, forward_vector], dim=-1)
return R
def orbit_camera(elevation, azimuth, radius=1.0, is_degree=True, target=None, opengl=True):
"""Converts elevation & azimuth to a batch of camera pose matrices."""
if is_degree:
elevation = torch.deg2rad(elevation)
azimuth = torch.deg2rad(azimuth)
x = radius * torch.cos(elevation) * torch.sin(azimuth)
y = -radius * torch.sin(elevation)
z = radius * torch.cos(elevation) * torch.cos(azimuth)
if target is None:
target = torch.zeros(3, dtype=torch.float32, device=elevation.device)
campos = torch.stack([x, y, z], dim=-1) + target
R = look_at(campos, target.unsqueeze(0).expand_as(campos), opengl)
T = torch.eye(4, dtype=torch.float32, device=elevation.device).unsqueeze(0).expand(campos.shape[0], -1, -1).clone()
T[:, :3, :3] = R
T[:, :3, 3] = campos
return T
def render_and_compare(camera_data, mesh_path, save_path, num_views=8):
parser = argparse.ArgumentParser()
parser.add_argument('--object', type=str, help="path to mesh (obj, ply, glb, ...)")
parser.add_argument('--path', type=str, help="path to mesh (obj, ply, glb, ...)")
parser.add_argument('--front_dir', type=str, default='+z', help="mesh front-facing dir")
parser.add_argument('--mode', default='albedo', type=str, choices=['lambertian', 'albedo', 'normal', 'depth'], help="rendering mode")
parser.add_argument('--W', type=int, default=256, help="GUI width")
parser.add_argument('--H', type=int, default=256, help="GUI height")
parser.add_argument("--wogui", type=bool, default=True, help="disable all dpg GUI")
parser.add_argument("--force_cuda_rast", action='store_true', help="force to use RasterizeCudaContext.")
parser.add_argument("--config", default='configs/navi.yaml', help="path to the yaml config file")
parser.add_argument('--radius', type=float, default=3, help="default GUI camera radius from center")
parser.add_argument('--fovy', type=float, default=49.1, help="default GUI camera fovy")
args, extras = parser.parse_known_args()
# override default config from cli
opt = OmegaConf.merge(OmegaConf.load(args.config), OmegaConf.from_cli(extras))
data = camera_data
opt.mesh = mesh_path
opt.trainable_texture = False
renderer = Renderer(opt).to(torch.device("cuda"))
target = renderer.mesh.v.mean(dim=0)
cameras = [CustomCamera(cam_params) for cam_params in data.values()]
# cams = [(cam.c2w, cam.perspective, cam.focal_length) for cam in cameras]
img_paths = [v["filepath"] for k, v in data.items()]
flags = [int(v["flag"]) for k, v in data.items()]
cam_centers = [mat2latlon(cam.camera_center - target) for idx, cam in enumerate(cameras) if flags[idx]]
ref_polars = [float(cam[0]) for cam in cam_centers]
ref_azimuths = [float(cam[1]) for cam in cam_centers]
ref_radii = [float(cam[2]) for cam in cam_centers]
base_cam = copy.copy(cameras[0])
base_cam.fx = np.array([cam.fx for idx, cam in enumerate(cameras) if flags[idx]], dtype=np.float32).mean()
base_cam.fy = np.array([cam.fy for idx, cam in enumerate(cameras) if flags[idx]], dtype=np.float32).mean()
base_cam.cx = 128
base_cam.cy = 128
lpips_loss = LPIPS(net='vgg').cuda()
elevation_range = (max([min(ref_polars) - 20, -89.9]), min([max(ref_polars) + 20, 89.9]))
azimuth_range = (-180, 180)
radius_range = (min(ref_radii) - 0.2, max(ref_radii) + 0.2)
elevation_steps = torch.arange(elevation_range[0], elevation_range[1], 15, dtype=torch.float32)
azimuth_steps = torch.arange(azimuth_range[0], azimuth_range[1], 15, dtype=torch.float32)
radius_steps = torch.arange(radius_range[0], radius_range[1], 0.2, dtype=torch.float32)
elevation_grid, azimuth_grid, radius_grid = torch.meshgrid(elevation_steps, azimuth_steps, radius_steps, indexing='ij')
pose_grid = torch.stack((elevation_grid.flatten(), azimuth_grid.flatten(), radius_grid.flatten()), dim=1)
poses = orbit_camera(pose_grid[:, 0], pose_grid[:, 1], pose_grid[:, 2], target=target.cpu())
print("Number of hypotheses:", poses.shape[0])
s1_steps = 128
s2_steps = 256
beta = 0.25
chunk_size = 512
for i in tqdm.tqdm(range(num_views)):
if flags[i]:
continue
pose_grid = torch.stack((elevation_grid.flatten(), azimuth_grid.flatten(), radius_grid.flatten()), dim=1)
poses = orbit_camera(pose_grid[:, 0], pose_grid[:, 1], pose_grid[:, 2], target=target.cpu())
img_path = img_paths[i]
base_cam.fx = cameras[i].fx
base_cam.fy = cameras[i].fy
perspectives = torch.from_numpy(base_cam.perspective).expand(pose_grid.shape[0], -1, -1)
learnable_cam_params = torch.randn(pose_grid.shape[0], 6) * 1e-6
learnable_cam_params.requires_grad_()
loss_MSE_grid = np.zeros(pose_grid.shape[0])
loss_LPIPS_grid = np.zeros(pose_grid.shape[0])
loss = 0
gt_img = Image.open(img_path)
if gt_img.mode == 'RGBA':
gt_img = np.asarray(gt_img, dtype=np.uint8).copy()
gt_mask = (gt_img[..., 3:] > 128).astype(np.float32)
gt_img[gt_img[:, :, -1] <= 255*0.9] = [255., 255., 255., 255.] # thresholding background
gt_img = gt_img[:, :, :3]
gt_tensor = torch.from_numpy(gt_img).float().unsqueeze(0).cuda() / 255.
gt_mask_tensor = torch.from_numpy(gt_mask).float().unsqueeze(0).cuda()
num_batches = pose_grid.shape[0] // chunk_size + int(pose_grid.shape[0]%chunk_size > 0)
# Render images for visualization
vis_img = torch.zeros(pose_grid.shape[0], 256, 256, 3)
for j in tqdm.tqdm(range(num_batches)):
batch_poses = poses[j*chunk_size:(j+1)*chunk_size]
batch_perspectives = perspectives[j*chunk_size:(j+1)*chunk_size]
with torch.no_grad():
out = renderer.render_batch(batch_poses, batch_perspectives, 256, 256, ssaa=1) # (500, 256, 256, 3)
# batch_image = (out["image"].detach().cpu().numpy() * 255).astype(np.uint8)
batch_image = out["image"].detach().cpu()
vis_img[j*chunk_size:(j+1)*chunk_size] = batch_image
l = [{'params': learnable_cam_params, 'lr': 5e-3, "name": "cam_params"}]
optimizer = torch.optim.Adam(l, lr=0.0, eps=1e-15)
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.99)
init_lr = optimizer.param_groups[0]['lr']
for j in tqdm.tqdm(range(num_batches)):
batch_poses = poses[j*chunk_size:(j+1)*chunk_size]
batch_perspectives = perspectives[j*chunk_size:(j+1)*chunk_size]
optimizer.param_groups[0]['lr'] = init_lr
for k in tqdm.tqdm(range(s1_steps)):
batch_residuals = SE3.exp(learnable_cam_params[j*chunk_size:(j+1)*chunk_size]).as_matrix() # [5760, 4, 4]
batch_poses_opt = torch.bmm(batch_poses, batch_residuals)
out = renderer.render_batch(batch_poses_opt, batch_perspectives, 256, 256, ssaa=1) # (500, 256, 256, 3)
pred_tensor = out["image"]
valid_mask = (out["alpha"] > 0) & (out["viewcos"] > 0.5) # (500, 256, 256, 1)
if k == s1_steps - 1:
loss = F.mse_loss(pred_tensor, gt_tensor.expand(pred_tensor.shape[0], -1, -1, -1), reduction='none').mean(dim=(1, 2, 3))
loss_MSE_grid[j*chunk_size:(j+1)*chunk_size] = loss.detach().cpu().numpy()
loss = loss.mean()
else:
loss = F.mse_loss(pred_tensor, gt_tensor.expand(pred_tensor.shape[0], -1, -1, -1), reduction='mean')
loss.backward()
optimizer.step()
optimizer.zero_grad()
scheduler.step()
# Render optimized images for visualization
# vis_img_optimized = torch.zeros(pose_grid.shape[0], 256, 256, 3)
# for j in tqdm.tqdm(range(num_batches)):
# batch_poses = poses[j*chunk_size:(j+1)*chunk_size]
# batch_perspectives = perspectives[j*chunk_size:(j+1)*chunk_size]
# batch_residuals = SE3.exp(learnable_cam_params[j*chunk_size:(j+1)*chunk_size]).as_matrix() # [5760, 4, 4]
# batch_poses_opt = torch.bmm(batch_poses, batch_residuals)
# with torch.no_grad():
# out = renderer.render_batch(batch_poses_opt, batch_perspectives, 256, 256, ssaa=1) # (500, 256, 256, 3)
# # batch_image = (out["image"].detach().cpu().numpy() * 255).astype(np.uint8)
# batch_image = out["image"].detach().cpu()
# vis_img_optimized[j*chunk_size:(j+1)*chunk_size] = batch_image
# indices = np.argsort(loss_MSE_grid)
# padding = (pose_grid.shape[0] // 10 + int(pose_grid.shape[0]%10 > 0)) * 10 - pose_grid.shape[0]
# grid = vis_img[indices].permute(0, 3, 1, 2).contiguous()
# padded_gird = torch.cat([grid, torch.ones(padding, 3, 256, 256)], dim=0)
# padded_gird = padded_gird.view((padding + pose_grid.shape[0]) // 10, 10, 3, 256, 256).permute(2, 0, 3, 1, 4)
# padded_gird = padded_gird.reshape(3, -1, 2560)
# output_path = os.path.join(save_path, f'vis1_candidates_{i}.png')
# save_image(padded_gird, output_path)
# grid = vis_img_optimized[indices].permute(0, 3, 1, 2).contiguous()
# padded_gird = torch.cat([grid, torch.ones(padding, 3, 256, 256)], dim=0)
# padded_gird = padded_gird.view((padding + pose_grid.shape[0]) // 10, 10, 3, 256, 256).permute(2, 0, 3, 1, 4)
# padded_gird = padded_gird.reshape(3, -1, 2560)
# output_path = os.path.join(save_path, f'vis1_optimized_candidates_{i}.png')
# save_image(padded_gird, output_path)
beta = 0.1
indices = np.argsort(loss_MSE_grid)[:max(int(loss_MSE_grid.shape[0] * beta), 64)]
batch_poses = poses[indices]
batch_residuals = SE3.exp(learnable_cam_params[indices].detach()).as_matrix() # [5760, 4, 4]
poses = torch.bmm(batch_poses, batch_residuals) # [216, 4, 4]
poses = poses.repeat(4, 1, 1)
learnable_cam_params = torch.randn(poses.shape[0], 6) * 1e-1
learnable_cam_params.requires_grad_()
optimizer.param_groups = []
optimizer.add_param_group({'params': learnable_cam_params})
perspectives = torch.from_numpy(cameras[i].perspective).expand(poses.shape[0], -1, -1)
loss_MSE_grid = np.zeros(poses.shape[0])
num_batches = poses.shape[0] // chunk_size + int(poses.shape[0]%chunk_size > 0)
for j in tqdm.tqdm(range(num_batches)):
batch_poses = poses[j*chunk_size:(j+1)*chunk_size]
batch_perspectives = perspectives[j*chunk_size:(j+1)*chunk_size]
optimizer.param_groups[0]['lr'] = 1e-3
for k in tqdm.tqdm(range(s2_steps)):
batch_residuals = SE3.exp(learnable_cam_params[j*chunk_size:(j+1)*chunk_size]).as_matrix() # [5760, 4, 4]
batch_poses_opt = torch.bmm(batch_poses, batch_residuals)
out = renderer.render_batch(batch_poses_opt, batch_perspectives, 256, 256, ssaa=1) # (500, 256, 256, 3)
pred_tensor = out["image"]
valid_mask = (out["alpha"] > 0) & (out["viewcos"] > 0.5) # (500, 256, 256, 1)
# batch_image = (out["image"].detach().cpu().numpy() * 255).astype(np.uint8)
# del batch_pose, batch_perspective
if k == s2_steps - 1:
loss = F.mse_loss(pred_tensor, gt_tensor.expand(pred_tensor.shape[0], -1, -1, -1), reduction='none').mean(dim=(1, 2, 3))
# loss += F.mse_loss(valid_mask, gt_mask_tensor.expand(pred_tensor.shape[0], -1, -1, -1), reduction='none').mean(dim=(1, 2, 3))
loss_MSE_grid[j*chunk_size:(j+1)*chunk_size] = loss.detach().cpu().numpy()
loss = loss.mean()
else:
loss = F.mse_loss(pred_tensor, gt_tensor.expand(pred_tensor.shape[0], -1, -1, -1), reduction='mean')
loss.backward()
optimizer.step()
optimizer.zero_grad()
scheduler.step()
beta = 0.1
indices = np.argsort(loss_MSE_grid)[:max(int(loss_MSE_grid.shape[0] * beta), 64)]
batch_poses = poses[indices]
batch_residuals = SE3.exp(learnable_cam_params[indices].detach()).as_matrix() # [5760, 4, 4]
poses = torch.bmm(batch_poses, batch_residuals) # [216, 4, 4]
poses = poses.repeat(4, 1, 1)
learnable_cam_params = torch.randn(poses.shape[0], 6) * 1e-2
learnable_cam_params.requires_grad_()
optimizer.param_groups = []
optimizer.add_param_group({'params': learnable_cam_params})
perspectives = torch.from_numpy(cameras[i].perspective).expand(poses.shape[0], -1, -1)
loss_MSE_grid = np.zeros(poses.shape[0])
num_batches = poses.shape[0] // chunk_size + int(poses.shape[0]%chunk_size > 0)
for j in tqdm.tqdm(range(num_batches)):
batch_poses = poses[j*chunk_size:(j+1)*chunk_size]
batch_perspectives = perspectives[j*chunk_size:(j+1)*chunk_size]
optimizer.param_groups[0]['lr'] = 1e-3
for k in tqdm.tqdm(range(s2_steps)):
batch_residuals = SE3.exp(learnable_cam_params[j*chunk_size:(j+1)*chunk_size]).as_matrix() # [5760, 4, 4]
batch_poses_opt = torch.bmm(batch_poses, batch_residuals)
out = renderer.render_batch(batch_poses_opt, batch_perspectives, 256, 256, ssaa=1) # (500, 256, 256, 3)
pred_tensor = out["image"]
valid_mask = (out["alpha"] > 0) & (out["viewcos"] > 0.5) # (500, 256, 256, 1)
if k == s2_steps - 1:
loss = F.mse_loss(pred_tensor, gt_tensor.expand(pred_tensor.shape[0], -1, -1, -1), reduction='none').mean(dim=(1, 2, 3))
# loss += F.mse_loss(valid_mask, gt_mask_tensor.expand(pred_tensor.shape[0], -1, -1, -1), reduction='none').mean(dim=(1, 2, 3))
loss_MSE_grid[j*chunk_size:(j+1)*chunk_size] = loss.detach().cpu().numpy()
loss = loss.mean()
else:
loss = F.mse_loss(pred_tensor, gt_tensor.expand(pred_tensor.shape[0], -1, -1, -1), reduction='mean')
loss.backward()
optimizer.step()
optimizer.zero_grad()
scheduler.step()
pose_grid = poses
loss_LPIPS_grid = np.zeros(poses.shape[0])
chunk_size = 64
gt_tensor = gt_tensor.permute(0, 3, 1, 2).contiguous()
vis_img_opt = np.zeros((pose_grid.shape[0], 256, 256, 3), dtype=np.uint8)
num_batches = pose_grid.shape[0] // chunk_size + int(pose_grid.shape[0]%chunk_size > 0)
for j in tqdm.tqdm(range(num_batches)):
batch_poses = poses[j*chunk_size:(j+1)*chunk_size]
batch_residuals = SE3.exp(learnable_cam_params[j*chunk_size:(j+1)*chunk_size]).as_matrix() # [5760, 4, 4]
batch_poses_opt = torch.bmm(batch_poses, batch_residuals)
batch_perspectives = perspectives[j*chunk_size:(j+1)*chunk_size]
with torch.no_grad():
out = renderer.render_batch(batch_poses_opt, batch_perspectives, 256, 256, ssaa=1) # (500, 256, 256, 3)
batch_image = (out["image"].detach().cpu().numpy() * 255).astype(np.uint8)
vis_img_opt[j*chunk_size:(j+1)*chunk_size] = batch_image
pred_tensor = out["image"].permute(0, 3, 1, 2).contiguous()
with torch.no_grad():
loss_LPIPS_grid[j*chunk_size:(j+1)*chunk_size] = lpips_loss(pred_tensor, gt_tensor.expand(pred_tensor.shape[0], -1, -1, -1)).squeeze().cpu().numpy()
# indices_of_smallest = np.argsort(loss_MSE_grid)[:15]
indices1 = np.argsort(loss_MSE_grid)
indices2 = np.argsort(loss_LPIPS_grid)
ranks1 = np.zeros_like(loss_MSE_grid)
ranks2 = np.zeros_like(loss_LPIPS_grid)
ranks1[indices1] = np.arange(1, loss_MSE_grid.size + 1)
ranks2[indices2] = np.arange(1, loss_LPIPS_grid.size + 1)
total_ranks = ranks1 + ranks2
indices_of_smallest = np.argsort(total_ranks)[:15]
index = indices_of_smallest[0]
residual = SE3.exp(learnable_cam_params[index].detach()).as_matrix() # [5760, 4, 4]
c2w = poses[index] @ residual
w2c = torch.inverse(c2w)
w2c[1:3, :] *= -1 # OpenCV to OpenGL
w2c[:2, :] *= -1 # PyTorch3D to OpenCV
data[list(data.keys())[i]]["R"] = w2c[:3, :3].T.tolist()
data[list(data.keys())[i]]["T"] = w2c[:3, 3].tolist()
num_frames = 16
cmap = plt.get_cmap("hot")
num_rows = 2
num_cols = 8
# plt.subplots_adjust(top=0.2)
figsize = (num_cols * 2, num_rows * 2.4)
fig, axs = plt.subplots(num_rows, num_cols, figsize=figsize)
fig.suptitle(f"Input Image v.s. Top 15 Similar Renderings", fontsize=16, y=0.93)
plt.subplots_adjust(top=0.9)
axs = axs.flatten()
for idx in range(num_rows * num_cols):
if idx < num_frames:
if idx == 0:
axs[idx].imshow(gt_img.reshape(256, 256, 3))
axs[idx].set_xlabel(f'Input Image', fontsize=10)
else:
axs[idx].imshow(vis_img_opt[indices_of_smallest[idx-1]].reshape(256, 256, 3))
loss_text = f"MSE: {loss_MSE_grid[indices_of_smallest[idx-1]]:.4f}_{int(ranks1[indices_of_smallest[idx-1]]):d}\nLPIPS: {loss_LPIPS_grid[indices_of_smallest[idx-1]]:.4f}_{int(ranks2[indices_of_smallest[idx-1]]):d}"
axs[idx].text(0.05, 0.95, loss_text, color='black', fontsize=8,
ha='left', va='top', transform=axs[idx].transAxes)
for s in ["bottom", "top", "left", "right"]:
if idx == 0:
axs[idx].spines[s].set_color("green")
else:
axs[idx].spines[s].set_color(cmap(0.8 * idx / (num_frames)))
axs[idx].spines[s].set_linewidth(5)
axs[idx].set_xticks([])
axs[idx].set_yticks([])
# if i >= args.all_views:
# axs[i].set_xlabel(f'MSE: {mse_losses[i%args.all_views]:.4f}\nLPIPS: {lpips_losses[i%args.all_views]:.4f}', fontsize=10)
else:
axs[i].axis("off")
plt.tight_layout()
output_path = os.path.join(save_path, f'vis_{i}_render_and_compare.png')
plt.savefig(output_path) # Save the figure to a file
plt.close(fig)
print(f"Visualization file written to {output_path}")
del lpips_loss, renderer, learnable_cam_params
gc.collect()
torch.cuda.empty_cache()
return data
def align_to_mesh(camera_data, mesh_path, save_path, num_views=8):
parser = argparse.ArgumentParser()
parser.add_argument('--object', type=str, help="path to mesh (obj, ply, glb, ...)")
parser.add_argument('--path', type=str, help="path to mesh (obj, ply, glb, ...)")
parser.add_argument('--front_dir', type=str, default='+z', help="mesh front-facing dir")
parser.add_argument('--mode', default='albedo', type=str, choices=['lambertian', 'albedo', 'normal', 'depth'], help="rendering mode")
parser.add_argument('--W', type=int, default=256, help="GUI width")
parser.add_argument('--H', type=int, default=256, help="GUI height")
parser.add_argument("--wogui", type=bool, default=True, help="disable all dpg GUI")
parser.add_argument("--force_cuda_rast", action='store_true', help="force to use RasterizeCudaContext.")
parser.add_argument("--config", default='configs/navi.yaml', help="path to the yaml config file")
parser.add_argument('--radius', type=float, default=3, help="default GUI camera radius from center")
parser.add_argument('--fovy', type=float, default=49.1, help="default GUI camera fovy")
args, extras = parser.parse_known_args()
# override default config from cli
opt = OmegaConf.merge(OmegaConf.load(args.config), OmegaConf.from_cli(extras))
data = camera_data
opt.mesh = mesh_path
opt.trainable_texture = False
renderer = Renderer(opt).to(torch.device("cuda"))
cameras = [CustomCamera(cam_params) for cam_params in data.values()]
# cams = [(cam.c2w, cam.perspective, cam.focal_length) for cam in cameras]
img_paths = [v["filepath"] for k, v in data.items()]
flags = [int(v["flag"]) for k, v in data.items()]
s1_steps = 128
num_hypotheses = 64
chunk_size = 512
print("Number of hypotheses:", num_hypotheses)
for i in tqdm.tqdm(range(num_views)):
if flags[i]:
continue
loss_MSE_grid = np.zeros(num_hypotheses)
vis_img_opt = torch.zeros(num_hypotheses, 256, 256, 3)
poses = torch.from_numpy(cameras[i].c2w).expand(num_hypotheses, -1, -1)
perspectives = torch.from_numpy(cameras[i].perspective).expand(num_hypotheses, -1, -1)
learnable_cam_params = torch.randn(num_hypotheses, 6) * 1e-3
learnable_cam_params.requires_grad_()
img_path = img_paths[i]
gt_img = Image.open(img_path)
if gt_img.mode == 'RGBA':
gt_img = np.asarray(gt_img, dtype=np.uint8).copy()
gt_mask = (gt_img[..., 3:] > 128).astype(np.float32)
gt_img[gt_img[:, :, -1] <= 255*0.9] = [255., 255., 255., 255.] # thresholding background
gt_img = gt_img[:, :, :3]
gt_tensor = torch.from_numpy(gt_img).float().unsqueeze(0).cuda() / 255.
gt_mask_tensor = torch.from_numpy(gt_mask).float().unsqueeze(0).cuda()
num_batches = num_hypotheses // chunk_size + int(num_hypotheses%chunk_size > 0)
l = [{'params': learnable_cam_params, 'lr': 5e-3, "name": "cam_params"}]
optimizer = torch.optim.Adam(l, lr=0.0, eps=1e-15)
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9)
init_lr = optimizer.param_groups[0]['lr']
for j in tqdm.tqdm(range(num_batches)):
batch_poses = poses[j*chunk_size:(j+1)*chunk_size]
batch_perspectives = perspectives[j*chunk_size:(j+1)*chunk_size]
optimizer.param_groups[0]['lr'] = init_lr
for k in tqdm.tqdm(range(s1_steps)):
batch_residuals = SE3.exp(learnable_cam_params[j*chunk_size:(j+1)*chunk_size]).as_matrix() # [5760, 4, 4]
batch_poses_opt = torch.bmm(batch_poses, batch_residuals)
out = renderer.render_batch(batch_poses_opt, batch_perspectives, 256, 256, ssaa=1) # (500, 256, 256, 3)
pred_tensor = out["image"]
if k == s1_steps - 1:
loss = F.mse_loss(pred_tensor, gt_tensor.expand(pred_tensor.shape[0], -1, -1, -1), reduction='none').mean(dim=(1, 2, 3))
# loss += F.mse_loss(valid_mask, gt_mask_tensor.expand(pred_tensor.shape[0], -1, -1, -1), reduction='none').mean(dim=(1, 2, 3))
loss_MSE_grid[j*chunk_size:(j+1)*chunk_size] = loss.detach().cpu().numpy()
batch_image = pred_tensor.detach().cpu()
vis_img_opt[j*chunk_size:(j+1)*chunk_size] = batch_image
loss = loss.mean()
else:
loss = F.mse_loss(pred_tensor, gt_tensor.expand(pred_tensor.shape[0], -1, -1, -1), reduction='mean')
loss.backward()
optimizer.step()
optimizer.zero_grad()
scheduler.step()
indices = np.argsort(loss_MSE_grid)
residual = SE3.exp(learnable_cam_params[indices[0]].detach()).as_matrix() # [5760, 4, 4]
c2w = torch.from_numpy(cameras[i].c2w) @ residual
w2c = torch.inverse(c2w)
w2c[1:3, :] *= -1 # OpenCV to OpenGL
w2c[:2, :] *= -1 # PyTorch3D to OpenCV
data[list(data.keys())[i]]["R"] = w2c[:3, :3].T.tolist()
data[list(data.keys())[i]]["T"] = w2c[:3, 3].tolist()
grid = vis_img_opt[indices].permute(0, 3, 1, 2).contiguous()
grid = grid.view(8, 8, 3, 256, 256).permute(2, 0, 3, 1, 4)
grid = grid.reshape(3, -1, int(256*8))
output_path = os.path.join(save_path, f'vis_aligned_candidates_{i}.png')
save_image(grid, output_path)
return data
|