File size: 9,016 Bytes
4f54ccd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import os
import re
import cv2
import csv
import json
import math
import tqdm
import shutil
import argparse
import numpy as np
from PIL import Image
from omegaconf import OmegaConf
import matplotlib.pyplot as plt

import torch
import torch.nn.functional as F
import nvdiffrast.torch as dr

from kiui.mesh import Mesh
from kiui.cam import OrbitCamera
from kiui.op import safe_normalize
from kiui.lpips import LPIPS

import sys 
from sparseags.mesh_utils.mesh_renderer import Renderer
from sparseags.cam_utils import orbit_camera, OrbitCamera
from sparseags.render_utils.gs_renderer import CustomCamera


class GUI:
	def __init__(self, opt):
		self.opt = opt
		self.W = opt.W
		self.H = opt.H
		self.wogui = opt.wogui # disable gui and run in cmd
		self.cam = OrbitCamera(opt.W, opt.H, r=opt.radius, fovy=opt.fovy)
		self.bg_color = torch.ones(3, dtype=torch.float32).cuda() # default white bg
		# self.bg_color = torch.zeros(3, dtype=torch.float32).cuda() # black bg

		self.render_buffer = np.zeros((self.W, self.H, 3), dtype=np.float32)
		self.need_update = True # camera moved, should reset accumulation
		self.light_dir = np.array([0, 0])
		self.ambient_ratio = 0.5

		# auto-rotate
		self.auto_rotate_cam = False
		self.auto_rotate_light = False
		
		self.mode = opt.mode
		self.render_modes = ['albedo', 'depth', 'normal', 'lambertian']

		# load mesh
		self.mesh = Mesh.load(opt.mesh, front_dir=opt.front_dir)

		if not opt.force_cuda_rast and (self.wogui or os.name == 'nt'):
			self.glctx = dr.RasterizeGLContext()
		else:
			self.glctx = dr.RasterizeCudaContext()
	
	def step(self):

		if not self.need_update:
			return
	
		starter, ender = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)
		starter.record()

		# do MVP for vertices
		pose = torch.from_numpy(self.cam.pose.astype(np.float32)).cuda()
		proj = torch.from_numpy(self.cam.perspective.astype(np.float32)).cuda()
		
		v_cam = torch.matmul(F.pad(self.mesh.v, pad=(0, 1), mode='constant', value=1.0), torch.inverse(pose).T).float().unsqueeze(0)
		v_clip = v_cam @ proj.T

		rast, rast_db = dr.rasterize(self.glctx, v_clip, self.mesh.f, (self.H, self.W))

		alpha = (rast[..., 3:] > 0).float()
		alpha = dr.antialias(alpha, rast, v_clip, self.mesh.f).squeeze(0).clamp(0, 1) # [H, W, 3]
		
		if self.mode == 'depth':
			depth, _ = dr.interpolate(-v_cam[..., [2]], rast, self.mesh.f) # [1, H, W, 1]
			depth = (depth - depth.min()) / (depth.max() - depth.min() + 1e-20)
			buffer = depth.squeeze(0).detach().cpu().numpy().repeat(3, -1) # [H, W, 3]
		else:
			# use vertex color if exists
			if self.mesh.vc is not None:
				albedo, _ = dr.interpolate(self.mesh.vc.unsqueeze(0).contiguous(), rast, self.mesh.f)
			# use texture image
			else:
				texc, _ = dr.interpolate(self.mesh.vt.unsqueeze(0).contiguous(), rast, self.mesh.ft)
				albedo = dr.texture(self.mesh.albedo.unsqueeze(0), texc, filter_mode='linear') # [1, H, W, 3]

			albedo = torch.where(rast[..., 3:] > 0, albedo, torch.tensor(0).to(albedo.device)) # remove background
			albedo = dr.antialias(albedo, rast, v_clip, self.mesh.f).clamp(0, 1) # [1, H, W, 3]
			if self.mode == 'albedo':
				albedo = albedo * alpha + self.bg_color * (1 - alpha)
				buffer = albedo[0].detach().cpu().numpy()
			else:
				normal, _ = dr.interpolate(self.mesh.vn.unsqueeze(0).contiguous(), rast, self.mesh.fn)
				normal = safe_normalize(normal)
				if self.mode == 'normal':
					normal_image = (normal[0] + 1) / 2
					normal_image = torch.where(rast[..., 3:] > 0, normal_image, torch.tensor(1).to(normal_image.device)) # remove background
					buffer = normal_image.detach().cpu().numpy()
				elif self.mode == 'lambertian':
					light_d = np.deg2rad(self.light_dir)
					light_d = np.array([
						np.cos(light_d[0]) * np.sin(light_d[1]),
						-np.sin(light_d[0]),
						np.cos(light_d[0]) * np.cos(light_d[1]),
					], dtype=np.float32)
					light_d = torch.from_numpy(light_d).to(albedo.device)
					lambertian = self.ambient_ratio + (1 - self.ambient_ratio)  * (normal @ light_d).float().clamp(min=0)
					albedo = (albedo * lambertian.unsqueeze(-1)) * alpha + self.bg_color * (1 - alpha)
					buffer = albedo[0].detach().cpu().numpy()

		ender.record()
		torch.cuda.synchronize()
		t = starter.elapsed_time(ender)

		self.render_buffer = buffer
		self.need_update = False

		if self.auto_rotate_cam:
			self.cam.orbit(5, 0)
			self.need_update = True
		
		if self.auto_rotate_light:
			self.light_dir[1] += 3
			self.need_update = True


def vis_output(camera_data, mesh_path=None, save_path=None, num_views=8):
	parser = argparse.ArgumentParser()
	parser.add_argument('--front_dir', type=str, default='+z', help="mesh front-facing dir")
	parser.add_argument('--mode', default='albedo', type=str, choices=['lambertian', 'albedo', 'normal', 'depth'], help="rendering mode")
	parser.add_argument('--W', type=int, default=256, help="GUI width")
	parser.add_argument('--H', type=int, default=256, help="GUI height")
	parser.add_argument('--radius', type=float, default=3, help="default GUI camera radius from center")
	parser.add_argument('--fovy', type=float, default=49.1, help="default GUI camera fovy")
	parser.add_argument("--wogui", type=bool, default=True, help="disable all dpg GUI")
	parser.add_argument("--force_cuda_rast", action='store_true', help="force to use RasterizeCudaContext.")
	parser.add_argument('--elevation', type=int, default=0, help="rendering elevation")
	parser.add_argument('--save_video', type=str, default=None, help="path to save rendered video")
	parser.add_argument('--idx', type=int, default=0, help="GUI height")
	parser.add_argument('--config', default='configs/navi.yaml', type=str, help='Path to config directory, which contains image.yaml')
	args, extras = parser.parse_known_args()

	# override default config from cli
	opt = OmegaConf.merge(OmegaConf.load(args.config), OmegaConf.from_cli(extras))
	data = camera_data

	cameras = [CustomCamera(cam_params) for cam_params in data.values()]
	cams = [(cam.c2w, cam.perspective, cam.focal_length) for cam in cameras]
	img_paths = [v["filepath"] for k, v in data.items()]

	opt.mesh = mesh_path
	opt.trainable_texture = False
	renderer = Renderer(opt).to(torch.device("cuda"))

	lpips_loss = LPIPS(net='vgg').cuda()
	mse_losses = []
	lpips_losses = []
	flags = [int(v["flag"]) for k, v in data.items()]
	images = np.zeros((2, num_views, 256, 256, 3), dtype=np.uint8)

	for i in tqdm.tqdm(range(len(cams))):

		img_path = img_paths[i]

		img = Image.open(img_path)
		if img.mode == 'RGBA':
			img = np.asarray(img, dtype=np.uint8).copy()
			img[img[:, :, -1] <= 255*0.9] = [255., 255., 255., 255.] # thresholding background
			img = img[:, :, :3]

		gt_tensor = torch.from_numpy(img).permute(2, 0, 1).float().unsqueeze(0).cuda() / 255.0

		images[0, i] = img

		with torch.no_grad():
			out = renderer.render(*cams[i][:2], 256, 256, ssaa=1)

		# rgb loss
		image = (out["image"].detach().cpu().numpy() * 255).astype(np.uint8)
		pred_tensor = out["image"].permute(2, 0, 1).float().unsqueeze(0).cuda()
		# obj_scale = ((out["alpha"] > 0) & (out["viewcos"] > 0.5)).detach().sum().float()
		obj_scale = (out["alpha"] > 0).detach().sum().float()
		obj_scale /= 256 ** 2
		
		images[1, i] = image
		with torch.no_grad():
			mse_losses.append(F.mse_loss(pred_tensor, gt_tensor).squeeze().cpu().numpy() / obj_scale.item())
			lpips_losses.append(lpips_loss(pred_tensor, gt_tensor).squeeze().cpu().numpy() / obj_scale.item())

	mean_mse = np.mean(np.array(mse_losses)[:num_views])
	mean_lpips = np.mean(np.array(lpips_losses)[:num_views])

	num_frames = 2 * num_views
	cmap = plt.get_cmap("hsv")
	num_rows = 2
	num_cols = num_views
	plt.subplots_adjust(top=0.2)
	figsize = (num_cols * 2, num_rows * 2.2)
	fig, axs = plt.subplots(num_rows, num_cols, figsize=figsize)
	fig.suptitle(f"Avg MSE: {mean_mse:.4f}, Avg LPIPS: {mean_lpips:.4f}", fontsize=16, y=0.97)
	axs = axs.flatten()
	for i in range(num_rows * num_cols):
		if i < num_frames:
			axs[i].imshow(images.reshape(-1, 256, 256, 3)[i])
			for s in ["bottom", "top", "left", "right"]:
				if i % num_views <= num_views - 1:
					if not flags[i%num_views]:
						axs[i].spines[s].set_color("red")
					else:
						axs[i].spines[s].set_color("green")
				else:
					axs[i].spines[s].set_color(cmap(i / (num_frames)))
				axs[i].spines[s].set_linewidth(5)
			axs[i].set_xticks([])
			axs[i].set_yticks([])

			if i >= num_views:
				axs[i].set_xlabel(f'MSE: {mse_losses[i%num_views]:.4f}\nLPIPS: {lpips_losses[i%num_views]:.4f}', fontsize=10)
		else:
			axs[i].axis("off")
	plt.tight_layout()
	plt.savefig(save_path)
	plt.close(fig)
	print(f"Visualization file written to {save_path}")

	out_dir = save_path.replace('vis.png', 'reprojections') 
	os.makedirs(out_dir, exist_ok=True)

	for i in range(num_views):
		gt = Image.fromarray(images[0, i])
		pred = Image.fromarray(images[1, i])
		gt.save(os.path.join(out_dir, f"gt_{i}.png"))
		pred.save(os.path.join(out_dir, f"pred_{i}.png"))

	return np.array(lpips_losses), np.array(mse_losses)