File size: 9,016 Bytes
4f54ccd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import os
import re
import cv2
import csv
import json
import math
import tqdm
import shutil
import argparse
import numpy as np
from PIL import Image
from omegaconf import OmegaConf
import matplotlib.pyplot as plt
import torch
import torch.nn.functional as F
import nvdiffrast.torch as dr
from kiui.mesh import Mesh
from kiui.cam import OrbitCamera
from kiui.op import safe_normalize
from kiui.lpips import LPIPS
import sys
from sparseags.mesh_utils.mesh_renderer import Renderer
from sparseags.cam_utils import orbit_camera, OrbitCamera
from sparseags.render_utils.gs_renderer import CustomCamera
class GUI:
def __init__(self, opt):
self.opt = opt
self.W = opt.W
self.H = opt.H
self.wogui = opt.wogui # disable gui and run in cmd
self.cam = OrbitCamera(opt.W, opt.H, r=opt.radius, fovy=opt.fovy)
self.bg_color = torch.ones(3, dtype=torch.float32).cuda() # default white bg
# self.bg_color = torch.zeros(3, dtype=torch.float32).cuda() # black bg
self.render_buffer = np.zeros((self.W, self.H, 3), dtype=np.float32)
self.need_update = True # camera moved, should reset accumulation
self.light_dir = np.array([0, 0])
self.ambient_ratio = 0.5
# auto-rotate
self.auto_rotate_cam = False
self.auto_rotate_light = False
self.mode = opt.mode
self.render_modes = ['albedo', 'depth', 'normal', 'lambertian']
# load mesh
self.mesh = Mesh.load(opt.mesh, front_dir=opt.front_dir)
if not opt.force_cuda_rast and (self.wogui or os.name == 'nt'):
self.glctx = dr.RasterizeGLContext()
else:
self.glctx = dr.RasterizeCudaContext()
def step(self):
if not self.need_update:
return
starter, ender = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)
starter.record()
# do MVP for vertices
pose = torch.from_numpy(self.cam.pose.astype(np.float32)).cuda()
proj = torch.from_numpy(self.cam.perspective.astype(np.float32)).cuda()
v_cam = torch.matmul(F.pad(self.mesh.v, pad=(0, 1), mode='constant', value=1.0), torch.inverse(pose).T).float().unsqueeze(0)
v_clip = v_cam @ proj.T
rast, rast_db = dr.rasterize(self.glctx, v_clip, self.mesh.f, (self.H, self.W))
alpha = (rast[..., 3:] > 0).float()
alpha = dr.antialias(alpha, rast, v_clip, self.mesh.f).squeeze(0).clamp(0, 1) # [H, W, 3]
if self.mode == 'depth':
depth, _ = dr.interpolate(-v_cam[..., [2]], rast, self.mesh.f) # [1, H, W, 1]
depth = (depth - depth.min()) / (depth.max() - depth.min() + 1e-20)
buffer = depth.squeeze(0).detach().cpu().numpy().repeat(3, -1) # [H, W, 3]
else:
# use vertex color if exists
if self.mesh.vc is not None:
albedo, _ = dr.interpolate(self.mesh.vc.unsqueeze(0).contiguous(), rast, self.mesh.f)
# use texture image
else:
texc, _ = dr.interpolate(self.mesh.vt.unsqueeze(0).contiguous(), rast, self.mesh.ft)
albedo = dr.texture(self.mesh.albedo.unsqueeze(0), texc, filter_mode='linear') # [1, H, W, 3]
albedo = torch.where(rast[..., 3:] > 0, albedo, torch.tensor(0).to(albedo.device)) # remove background
albedo = dr.antialias(albedo, rast, v_clip, self.mesh.f).clamp(0, 1) # [1, H, W, 3]
if self.mode == 'albedo':
albedo = albedo * alpha + self.bg_color * (1 - alpha)
buffer = albedo[0].detach().cpu().numpy()
else:
normal, _ = dr.interpolate(self.mesh.vn.unsqueeze(0).contiguous(), rast, self.mesh.fn)
normal = safe_normalize(normal)
if self.mode == 'normal':
normal_image = (normal[0] + 1) / 2
normal_image = torch.where(rast[..., 3:] > 0, normal_image, torch.tensor(1).to(normal_image.device)) # remove background
buffer = normal_image.detach().cpu().numpy()
elif self.mode == 'lambertian':
light_d = np.deg2rad(self.light_dir)
light_d = np.array([
np.cos(light_d[0]) * np.sin(light_d[1]),
-np.sin(light_d[0]),
np.cos(light_d[0]) * np.cos(light_d[1]),
], dtype=np.float32)
light_d = torch.from_numpy(light_d).to(albedo.device)
lambertian = self.ambient_ratio + (1 - self.ambient_ratio) * (normal @ light_d).float().clamp(min=0)
albedo = (albedo * lambertian.unsqueeze(-1)) * alpha + self.bg_color * (1 - alpha)
buffer = albedo[0].detach().cpu().numpy()
ender.record()
torch.cuda.synchronize()
t = starter.elapsed_time(ender)
self.render_buffer = buffer
self.need_update = False
if self.auto_rotate_cam:
self.cam.orbit(5, 0)
self.need_update = True
if self.auto_rotate_light:
self.light_dir[1] += 3
self.need_update = True
def vis_output(camera_data, mesh_path=None, save_path=None, num_views=8):
parser = argparse.ArgumentParser()
parser.add_argument('--front_dir', type=str, default='+z', help="mesh front-facing dir")
parser.add_argument('--mode', default='albedo', type=str, choices=['lambertian', 'albedo', 'normal', 'depth'], help="rendering mode")
parser.add_argument('--W', type=int, default=256, help="GUI width")
parser.add_argument('--H', type=int, default=256, help="GUI height")
parser.add_argument('--radius', type=float, default=3, help="default GUI camera radius from center")
parser.add_argument('--fovy', type=float, default=49.1, help="default GUI camera fovy")
parser.add_argument("--wogui", type=bool, default=True, help="disable all dpg GUI")
parser.add_argument("--force_cuda_rast", action='store_true', help="force to use RasterizeCudaContext.")
parser.add_argument('--elevation', type=int, default=0, help="rendering elevation")
parser.add_argument('--save_video', type=str, default=None, help="path to save rendered video")
parser.add_argument('--idx', type=int, default=0, help="GUI height")
parser.add_argument('--config', default='configs/navi.yaml', type=str, help='Path to config directory, which contains image.yaml')
args, extras = parser.parse_known_args()
# override default config from cli
opt = OmegaConf.merge(OmegaConf.load(args.config), OmegaConf.from_cli(extras))
data = camera_data
cameras = [CustomCamera(cam_params) for cam_params in data.values()]
cams = [(cam.c2w, cam.perspective, cam.focal_length) for cam in cameras]
img_paths = [v["filepath"] for k, v in data.items()]
opt.mesh = mesh_path
opt.trainable_texture = False
renderer = Renderer(opt).to(torch.device("cuda"))
lpips_loss = LPIPS(net='vgg').cuda()
mse_losses = []
lpips_losses = []
flags = [int(v["flag"]) for k, v in data.items()]
images = np.zeros((2, num_views, 256, 256, 3), dtype=np.uint8)
for i in tqdm.tqdm(range(len(cams))):
img_path = img_paths[i]
img = Image.open(img_path)
if img.mode == 'RGBA':
img = np.asarray(img, dtype=np.uint8).copy()
img[img[:, :, -1] <= 255*0.9] = [255., 255., 255., 255.] # thresholding background
img = img[:, :, :3]
gt_tensor = torch.from_numpy(img).permute(2, 0, 1).float().unsqueeze(0).cuda() / 255.0
images[0, i] = img
with torch.no_grad():
out = renderer.render(*cams[i][:2], 256, 256, ssaa=1)
# rgb loss
image = (out["image"].detach().cpu().numpy() * 255).astype(np.uint8)
pred_tensor = out["image"].permute(2, 0, 1).float().unsqueeze(0).cuda()
# obj_scale = ((out["alpha"] > 0) & (out["viewcos"] > 0.5)).detach().sum().float()
obj_scale = (out["alpha"] > 0).detach().sum().float()
obj_scale /= 256 ** 2
images[1, i] = image
with torch.no_grad():
mse_losses.append(F.mse_loss(pred_tensor, gt_tensor).squeeze().cpu().numpy() / obj_scale.item())
lpips_losses.append(lpips_loss(pred_tensor, gt_tensor).squeeze().cpu().numpy() / obj_scale.item())
mean_mse = np.mean(np.array(mse_losses)[:num_views])
mean_lpips = np.mean(np.array(lpips_losses)[:num_views])
num_frames = 2 * num_views
cmap = plt.get_cmap("hsv")
num_rows = 2
num_cols = num_views
plt.subplots_adjust(top=0.2)
figsize = (num_cols * 2, num_rows * 2.2)
fig, axs = plt.subplots(num_rows, num_cols, figsize=figsize)
fig.suptitle(f"Avg MSE: {mean_mse:.4f}, Avg LPIPS: {mean_lpips:.4f}", fontsize=16, y=0.97)
axs = axs.flatten()
for i in range(num_rows * num_cols):
if i < num_frames:
axs[i].imshow(images.reshape(-1, 256, 256, 3)[i])
for s in ["bottom", "top", "left", "right"]:
if i % num_views <= num_views - 1:
if not flags[i%num_views]:
axs[i].spines[s].set_color("red")
else:
axs[i].spines[s].set_color("green")
else:
axs[i].spines[s].set_color(cmap(i / (num_frames)))
axs[i].spines[s].set_linewidth(5)
axs[i].set_xticks([])
axs[i].set_yticks([])
if i >= num_views:
axs[i].set_xlabel(f'MSE: {mse_losses[i%num_views]:.4f}\nLPIPS: {lpips_losses[i%num_views]:.4f}', fontsize=10)
else:
axs[i].axis("off")
plt.tight_layout()
plt.savefig(save_path)
plt.close(fig)
print(f"Visualization file written to {save_path}")
out_dir = save_path.replace('vis.png', 'reprojections')
os.makedirs(out_dir, exist_ok=True)
for i in range(num_views):
gt = Image.fromarray(images[0, i])
pred = Image.fromarray(images[1, i])
gt.save(os.path.join(out_dir, f"gt_{i}.png"))
pred.save(os.path.join(out_dir, f"pred_{i}.png"))
return np.array(lpips_losses), np.array(mse_losses)
|